Abstract:
A spectral encoder for producing spectrally selected images of a radiation field containing multiple spectral components. An imaging spectrograph defines a first optical path that produces from the input radiation field a spectrally dispersed image comprising multiple spectral components displaced along a dispersion direction. Spectral pass bands are encoded on the dispersed image by a programmable spatial light modulator using one or more spatial masks. The imaging spectrograph further defines a second optical path that reverses the spectral dispersion of the first path and produces a spectrally-encoded polychromatic output image containing only those spectral components encoded by the spatial mask. The first and second optical paths share a common dispersing element. A detector records at least one spatial region of the spectrally encoded output image.
Abstract:
According to one aspect, an IR spectrometer includes a light source adapted to illuminate a sample, a grating adapted to spectrally disperse a light that has illuminated the sample, a MEMS array adapted to be electrostatically actuated by a controller to control a diffraction of the light, a detector configured to detect the light, and a power source adapted to supply power to the light source and to the MEMS array, wherein the controller is adapted to control the MEMS array so as to manage a power consumption of the IR spectrometer. In one embodiment, the IR spectrometer includes a housing sized and arranged to house the light source, the grating, the MEMS array, the controller, the detector, and the power source in a hand-held device.
Abstract:
Embodiments of the present invention relate to systems and methods for spectral imaging. In one embodiment, an image of the scene is formed on a coded aperture of a spectrometer. A coded image from the coded aperture is detected on a two-dimensional detector array of the spectrometer through a spectrally dispersive element of the spectrometer. Data from the two-dimensional detector array is collected as the coded image is varied over time. The spectral image is estimated from the data collected and the variation of the coded image over time. The data collected is varied over time through translation, rotation, and defocus.
Abstract:
A class of aperture coded spectrometer is optimized for the spectral characterization of diffuse sources. The instrument achieves high throughput and high spatial resolution by replacing the slit of conventional dispersive spectrometers with a spatial filter or mask. A number of masks can be used including Harmonic masks, Legendre masks, and Hadamard masks.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Abstract:
An entrance slit of the spectrometer is illuminated with optical radiation. An optical component images the entrance slit to an optical modulator by the optical radiation and disperses the optical radiation into a spectrum. The spectrum is modulated by the optical modulator The optical component composes spectral non-dispersive measurement radiation of the spectrum and images the entrance slit included in the measurement radiation to an exit slit which may be the same one as the exit slit or a different one. Measurement radiation is detected from the entrance slit with a detector, which converts the measurement radiation into an electrical measurement signal.
Abstract:
An imaging spectrometer that includes a mask (214) that has an array of n rows (302) and n columns (304) of transmissive elements (306) for transmitting the light from a plurality of locations of an image and of opaque elements (308) for blocking light from a plurality of locations of the image. The transmissive and opaque elements are arranged in a Hadamard pattern having rows (and columns) that are different cyclic iterations of an m-sequence. A grating (110) disperses the transmitted light from the transmissive elements (306) in a linear spatial relationship in a predetermined relationship to the wavelength of the transmitted light. A detector array (406) has a plurality of detector elements (408) arranged in a row to receive the dispersed transmitted light from the grating (110). Each detector element (408) provides an intensity signal indicative of the intensity of the light impinging thereon. A computer (410) generates a spectrum matrix having elements indicative of the frequency spectrum of the plurality of locations of the image. The spectrum matrix is produced by matrix multiplication of an inverse mask pattern matrix and a data matrix. Each element of the mask pattern matrix is either a 0 for opaque elements (308) or a 1 for transmissive elements (306). The inverse mask pattern matrix is generated by replacing each 0 of the pattern by -1, taking the transpose, and multiplying by 2/(n+1). Each row of the data matrix represents data taken from the same location of the image and through a corresponding row of the mask (214).
Abstract:
An improved Raman spectrometer device is provided which provides useful spectral information in situations where Raman spectroscopy has heretofore been unworkable. The spectrometer of the invention makes use of a stationary electrooptical masking device in lieu of conventional slit scanning optics, with the mask being computer controlled to provide a multiplexing function, typically employing Hadamard mathematics. The stationary encoding mask permits use of a relatively inexpensive photodiode detector, as compared with photomultiplier tubes conventionally used in Raman instrumentation. Advantageously, unwanted Rayleigh scattered radiation can be completely eliminated, either by blanking those zones of the mask receiving such radiation, or physically locating the device in such orientation that the Rayleigh scattered radiation does not pass through operative portions of the mask.
Abstract:
An improved masking device for optical-type radiations is provided and employed in improved optical apparatus, such as spectrometers, requiring alterable radiation masking. The masking device involves no movable parts, is adapted to operate in a fixed position and has radiation transmission and/or reflection characteristics which are selectively alterable merely by controlling electrical excitation applied to the device. The masking device typically has a plurality of separated and predisposedly offset, coplanar zones of solidified, electro-optically active material carried upon a typically transparent substrate and bounded by areas of an opaque material. The active material may be any of the crystalline or polycrystalline materials which have the property of changing their optical characteristic between being relatively transmissive and being relatively reflective and/or opaque for radiations of the wavelengths of interest, in response to the passage of electrical current through the material. Alteration of the optical masking pattern configuration of the masking device under electrical control is sufficiently rapid to accommodate to computerized optical apparatus, such as infrared spectroscopic systems utilizing Hadamard transforms or analogous mathematical techniques.