Abstract:
Techniques for providing a tamper mechanism for semiconductor devices are disclosed herein. The techniques include, for example, providing at least one die and at least one strain gauge, orienting the at least one strain gauge to the die, forming an encapsulated semiconductor device by encapsulating the die and each strain gauge within a mold compound to maintain respective orientation, and measuring an initial strain value for the at least one strain gauge after forming the encapsulated semiconductor device.
Abstract:
The present invention is directed to an impact absorption and detection system, including: one or more deflectable arch springs, having at least one leg with proximal and distal ends; and one or more bases, each of the proximal and distal ends attached to a base. Some embodiments may include: a plurality of arch spring assemblies, including: a deflectable arch spring having at least one leg with proximal and distal ends; one or more bases, each of the proximal and distal ends attached to a base; at least one sensor attached to the arch spring assembly; wherein the plurality of arch spring assemblies is configured in a chainmail arrangement and a base of one arch spring assembly is connected with a base of another arch spring assembly; a processor electrically connected to the sensors attached to the plurality of arch spring assemblies; and a data store in communication with the processor.
Abstract:
A method and system for analysis of a viscoelastic response in a deformable material. The system includes a light source configured to provide linearly polarized light and a polariscope configured to receive said linearly polarized light and to generate an image associated with a viscoelastic response of said deformable material. The system also includes a machine vision system configured to operate on the image to locate the response on the deformable material and to classify the response as one of a plurality of predefined types of responses. A display may then be provide that is configured to provide feedback of the location of the viscoelastic response and classification of the response to a user of said system.
Abstract:
A non-powered impact recorder is disclosed. The non-powered impact recorder includes a resonator tuned for a resonant response within a predetermined frequency range. A reduced cross-sectional area portion is formed within the resonator and configured to structurally fail when the resonator experiences the resonant response. Additionally, the non-powered impact recorder includes an electric circuit element disposed about the reduced cross-sectional area portion of the resonator. Upon structural failure of the resonator, the electric circuit element is broken to cause a discontinuity in the electric circuit element. Interrogation of the discontinuous electric circuit element facilitates approximation of impact frequency and/or impact energy.
Abstract:
Strain sensing may be provided. First, a strain threshold for a circuit board may be determined. Then a strain capacitor may be selected that will fail when the circuit board is subjected to the strain threshold while the strain capacitor is mounted on the circuit board. The strain capacitor may be ceramic and may be in a commercially available size. The strain capacitor may then be mounted to the circuit board and monitored for failure.
Abstract:
A non-powered impact recorder is disclosed. The non-powered impact recorder includes a resonator tuned for a resonant response within a predetermined frequency range. A reduced cross-sectional area portion is formed within the resonator and configured to structurally fail when the resonator experiences the resonant response. Additionally, the non-powered impact recorder includes an electric circuit element disposed about the reduced cross-sectional area portion of the resonator. Upon structural failure of the resonator, the electric circuit element is broken to cause a discontinuity in the electric circuit element. Interrogation of the discontinuous electric circuit element facilitates approximation of impact frequency and/or impact energy.
Abstract:
Displacement occurring by external force between a first member (a case, for example) and a second member (an LCD holder, for example) facing the first member is applied to a detection body (an external force detector), and a loading history of the external force (fracture surfaces) is detected by deformation of the detection body occurring when the force exceeds an allowable limit. Provided are a body section and a force receiving section (a head, arms) projected from the body section. The body section is provided between the first member and the second member facing the first member and is supported by either first or second members. The force receiving section deforms when external force acting in the direction crossing a gap between the first and second members or in the direction along the gap exceeds the allowable limit.
Abstract:
A method for customizing the fit of a saddle to a given horse and apparatuses thereof. The method comprises a step of inserting under a saddle disposed on the horse's back, a cushion pad previously shaped to uniformly distribute the pressure of the saddle on the horse. The method may further comprise a step of shaping the cushion pad by disposing on the horse's back an impression pad which contains a putty-like material to imprint the relief pattern of the pressure distribution of a saddle disposed on the horse's back. This is followed by setting the saddle on the impression pad, by riding the horse to imprint a relief pattern of the pressure distribution of the saddle on the impression pad, and by shaping the cushion pad by reproducing the relief pattern of the impression pad.
Abstract:
Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.
Abstract:
A device for measuring compression forces, preferably compression forces acting on mine roof supports in an underground mine gallery, comprises a pair of spaced substantially parallel abutment plates between which a pressure body composed of a plurality of elongated parts of relatively brittle material and having respectively different resistance against compression forces are arranged, closely adjacent each other, and extending in longitudinal direction normal to the abutment plates to be subjected to compression forces acting in opposite directions on the abutment plates, whereby the parts will be respectively deformed to a different degree indicating thereby the magnitude of the compression forces.