Abstract:
Methods, apparatuses, systems, and computer-readable media for communicating via an electronic device for use in a mouth environment of an animal and resistant to damage from bodily fluids and pressure. The device can be pierced through a tongue, a lip, or a cheek, anchored to a tooth or a teeth of the mandible, or implanted in (or attached to an implant in) the maxilla or mandible. The device includes: a power device, which can power the apparatus, a memory storage device, which can store and recall data; a communications subsystem, which communicates with one or more remote devices; an output device, which creates stimulus directly or indirectly observable in the mouth environment; an input device, which can create signals according to activity in the mouth environment and can send them to the memory storage device and/or processor; and a processor coupled to the memory storage device, the communication subsystem, the output device and the input device.
Abstract:
According to one aspect, an electronic device adapted to be controlled by an audio accessory. The electronic device includes at least one resonator. Each resonator is tuned to respond to a particular frequency that corresponds to a particular message generated by the audio accessory. When the particular message is received, the corresponding resonator resonates to generate an output signal that controls the electronic device.
Abstract:
Disclosed is a control method of a communication system including at least one sensor that a user wears, a wireless communication apparatus and a coordinator. The control method of the communication system includes: in the coordinator, receiving a proxy authority request for proxy with respect to the at least one sensor and the coordinator from the wireless communication apparatus, and granting the proxy authority to the wireless communication apparatus; in the wireless communication apparatus, creating a user identifier corresponding to the user; in the wireless communication apparatus, searching for the at least one sensor that the user wears, and forming a pairing with the at least one found sensor; in the wireless communication apparatus, making a request to the at least one found sensor for association information for the association with the coordinator and the sensor, and receiving the association information; in the wireless communication apparatus, making a request to the coordinator for association proxy for an association between the at least one found sensor and the coordinator, and receiving the association proxy in response to the request; and in the coordinator, requesting data by forming an association with the at least one found sensor, and receiving data corresponding to the data request.
Abstract:
A transmitter for remote control includes a first analog-to-digital converter (ADC) to receive a first audio signal from a electronic device and convert the first audio signal to a first direct-current (DC) signal, a first boost circuit connected to the first ADC to receive and amplify the first DC signal, a second ADC receives a second audio signal from the electronic device and converts the second audio signal to a second DC signal, a second boost circuit connected to the second ADC to receive and amplify the second DC signal, an energy storage element and a transmission module is powered by the energy storage element and generates a carrier signal, the transmission module receives the amplified first DC signal from the first boost circuit, the amplified first DC signal modulates the carrier signal generated by the transmission module, and the amplified second DC signal charges the energy storage element.
Abstract:
Receivers, apparatuses, and methods associated with packet classification based power saving receiver are described. In one embodiment, an 802.11 receiver includes receive and control units. The receive unit has a higher power receive frame state and a lower power ignore frame state. The receive unit, when in the receive frame state, receives radio frequency (RF) signals associated with an incoming frame and provides decoded information concerning the incoming frame. The receive unit, when in the ignore frame state, does not receive RF signals associated with the incoming frame and/or does not decode RF signals associated with the incoming frame. The control unit controls the receive unit to enter the ignore frame state upon determining that the incoming frame is to be filtered and to return to the receive frame state in time to receive a subsequent incoming frame and perform end of frame processing consistent with the CSMA/CA protocol.
Abstract:
The object of the present invention is to provide a remote control device of an electric equipment unit comprising a remote control comprising at least one actuating button of the mechanism of the equipment unit by means of transmission means provided partly in the remote control and partly in the control interface of the equipment unit. This device comprises a dongle designed to be inserted in the control interface of the equipment unit to be connected to the mechanism by a connector, said dongle being commanded by the remote control and being designed to transmit the control orders between the remote control and the mechanism of the equipment unit, said dongle being stowed in a location provided for this purpose inside the remote control housing after use.
Abstract:
The invention concerns a self-powered remote control device comprising transmitting means, a feeder circuit connected to said transmitting means, a generator supplying electric power connected to the feeder circuit, and control means associated with the electric power generator. The generator comprises at least a piezoelectric element receiving mechanical stresses produced by actuating the control means and supplying electric power to the feeder circuit. The invention also concerns an apparatus comprising at least a self-contained control device actuated by a mechanical action member. The invention further concerns an electric installation comprising means for receiving signals transmitted by at least a self-powered control device.
Abstract:
The invention concerns a self-powered remote control device comprising transmitting means, a feeder circuit connected to said transmitting means, a generator supplying electric power connected to the feeder circuit, and control means associated with the electric power generator. The generator comprises at least a piezoelectric element receiving mechanical stresses produced by actuating the control means and supplying electric power to the feeder circuit. The invention also concerns an apparatus comprising at least a self-contained control device actuated by a mechanical action member. The invention further concerns an electric installation comprising means for receiving signals transmitted by at least a self-powered control device.