Abstract:
A keyboard (10) is disclosed including a flexible display membrane (36) overlying a plurality of pressure-responsive switches (28). The display membrane (36) can be electrically addressed to display location indicia (48) indicating the position of an underlying switch (46), and functional indicia (50) indication the function of the key (46). Informational text (58) can also be displayed on the flexible display (36) indicating the choice of switches to effect a desired function. An interactive exchange of information between the keyboard user and a processing system (14) can be achieved to accomplish a desired function. Graphical information can be input to the processing system (14) by an array (90) of pressure-responsive elements (91). Graphics input by the array (90) can be reproduced on an overlying portion (96) of the flexible display membrane (36).
Abstract:
It is possible to detect the compressive force being applied by means of the conventional compressive force detecting sensor. However, the time length and the magnitude of the compressive force fail to be detected and it is impossible to know the extent of damage as a result of the compressive force being applied. For solution of this problem, the compressive force detecting sensor of the invention includes a tape switch composed of a pair of belt-like electrode plates arranged in facing relation to each other with a predetermined spacing therebetween, said tape switch being covered with a pliable covering member therearound; a piezoelectric sensor having a cable or a film like shape laminated on said tape switch; and an outer shell of pliable material to cover said tape switch and said piezoelectric sensor.
Abstract:
A miniature isometric joystick is disclosed for receiving manual user input to effect directional control such as controlling cursor movement on a computer display screen or controlling movement of an apparatus such as a machine or robot. The joystick is arranged to fit between the existing keys in a computer keyboard. The joystick includes a preloading spring for compressing the assembly together, thereby biasing the force sensors so as to neutralize manufacturing variations and control electrical and mechanical null zones. An integrated switch is provided in the joystick for detecting an external force applied by the user's fingertip. The switch unobtrusively detects when a user is pointing, thereby allowing a control system to measure pointing system bias signals while the user is not pointing. This permits the control system to automatically correct for drift, without requiring additional keyboard space for a separate switch to enable the pointing device.
Abstract:
A monolithic piezoelectric key structure having a piezoelectric layer adherently connected between two conductive areas. The piezoelectric layer is applied as a fluid on the base conductive area and transformed into a coherent solid adhering to the base conductive area. The other conductive area is adherently formed on the piezoelectric layer. The monolithic structure is polarized.
Abstract:
Data acquisition in a multi-function keyboard system includes both acquiring typing data by conventional keyboard scanning techniques and, simultaneously, acquiring pointing data by sampling force sensors coupled to the multi-function pointing key. The keyboard system periodically samples the force sensors to determine bias values defining a null point, and updates the bias values by a moving average calculation to compensate for manufacturing tolerance and long term drift. In response to a start pointing command from the host processor, the keyboard system transmits bias values and then pointing values, the latter being responsive to forces applied to the pointing key by the user for cursor control. The sensor values are encoded so as to pass through to the host processor in a manner transparent to application software. The system scans the force sensors periodically to acquire successive pointing values, and transmits them to the host, as long as pointing mode persists. Concurrently, the keyboard system scans the keyboard to detect other key changes and forwards them to the host as well. The keyswitch data may be interpreted as a pointing event (analogous to a mouse button action), or as an indication to change to typing mode.
Abstract:
A key switch is disclosed. The key switch includes an axis, a pressure sensor layer, an axis component, and a key cap. The axis support includes a first opening. The pressure sensor layer is made of a pressure-sensitive electronic material and disposed on an upper surface of the axis support. The axis component is disposed in the first opening and vertically movable with respect to the axis support and the pressure sensor layer. The keycap is mounted on the axis component and includes a lower surface facing the upper surface of the axis support. When the keycap is depressed, the lower surface of the keycap depresses the pressure sensor layer and an electronic property of the pressure sensor layer varies. An analog pressure detection system including the key switch is also disclosed.
Abstract:
A control panel for a vehicle. The control panel includes a decorative layer and a control assembly. The decorative layer has a visible face and a rear face opposite to the visible face. The control assembly has a front face and a rear face opposite to the front face. The front face of the control assembly faces the rear face of the decorative layer. The control assembly is fixed to the decorative layer and includes a support film, a pressure sensor and a light-emitting diode. The pressure sensor and the light-emitting diode are printed on the support film.
Abstract:
A cover glass pressure button (CGPB) is disclosed for an electronic device that has an image display module which is protected by a cover glass. When the cover glass is pressed, the CGPB senses the pressure to output a corresponding physical parameter to a control circuit for triggering a function of the image display module.
Abstract:
Disclosed herein are a data input device and an input conversion method using the data input device. The data input device includes a detection unit provided in a predetermined input region, the detection unit processing first directional input that generates a first directional input signal through detection of lateral pressing in a predetermined radial direction by a finger placed at a reference location in the input region, second directional input that generates a second directional input signal through detection of vertical pressing in a predetermined direction in a state in which the finger is placed at the reference location, third directional input that generates a third directional input signal through detection of tilt pressing in a state in which the finger is placed at the reference location, and fourth directional input that generates a fourth directional input signal through detection of a tilt input in a state in which the finger is placed at the reference location; and a control unit configured to determine input locations of a lateral pressing direction, vertical pressing direction, tilt pressing direction and tilting direction of the finger, extract relevant data from memory, and input the extracted data; wherein the data is input through combination of two or more of the first to fourth directional inputs.
Abstract:
A cover glass pressure button (CGPB) is disclosed for an electronic device that has an image display module which is protected by a cover glass. When the cover glass is pressed, the CGPB senses the pressure to output a corresponding physical parameter to a control circuit for triggering a function of the image display module.