Abstract:
A filament assembly can include: a button having a planar emitter region with one or more apertures extending from an emission surface of the planar emitter region to an internal surface opposite of the emission surface; an inlet electrical lead coupled to the button at a first side; an outlet electrical lead coupled to the button at a second side opposite of the first side; and a low work function object positioned adjacent to the internal surface of the planar emitter region and retained to the button. The planar emitter region can include a plurality of apertures. The low work function object can include a porous ceramic material having the barium, and may have a polished external surface. An electron gun can include the filament assembly. An additive manufacturing system can include the electron gun having the filament assembly.
Abstract:
The invention relates to the field of production of barium-scandate dispenser cathodes or other barium-scandate materials. A target (66) containing a mixture of BaO, CaO, Al2O3 and Sc2O3 tends to be more stable, the higher the scandia (scandium oxide) content is. However, an increased scandia content results in a reduced emission capability. A destabilizing effect of BaO and CaO reactions is counteracted by the more inert Sc2O3 and also Al2O3 components, as not only an increased scandia content stabilizes the material but also an increased alumina (aluminum oxide) content improves the stability.
Abstract:
Improved field emission cathodes comprise a fiber of highly aligned and densely packed single-wall carbon nanotubes, double-wall carbon nanotubes, multi-wall carbon nanotubes, grapheme nanoribbons, carbon nanofibers, and/or carbon planar nanostructures. The fiber cathodes provide superior current carrying capacity without degradation or adverse effects under high field strength testing. The fibers also can be configured as multi-fiber field emission cathodes, and the use of low work function coatings and different tip configurations further improves their performance.
Abstract:
A dispenser cathode which comprises an emission surface, a reservoir for material releasing, when heated, work-function-lowering particles, and at least one passage for allowing diffusion of work-function-lowering particles from said reservoir to said emission surface, said emission surface comprising at least one emission area and at least one non-emission area covered with emission-suppressing material and surrounding each emission area, said non-emission area comprising at least one passage connecting said reservoir with said non-emission area and debouching within a diffusion length distance from an emission area for allowing diffusion of work-function-lowering particles from said reservoir to said emission area.
Abstract:
A dispenser cathode which comprises an emission surface, a reservoir for material releasing, when heated, work-function-lowering particles, and at least one passage for allowing diffusion of work-function-lowering particles from said reservoir to said emission surface, said emission surface comprising at least one emission area and at least one non-emission area covered with emission-suppressing material and surrounding each emission area, said non-emission area comprising at least one passage connecting said reservoir with said non-emission area and debouching within a diffusion length distance from an emission area for allowing diffusion of work-function-lowering particles from said reservoir to said emission area.
Abstract:
A dispenser cathode which comprises an emission surface, a reservoir for material releasing, when heated, work-function-lowering particles, and at least one passage for allowing diffusion of work-function-lowering particles from said reservoir to said emission surface, said emission surface comprising at least one emission area and at least one non-emission area covered with emission-suppressing material and surrounding each emission area, said non-emission area comprising at least one passage connecting said reservoir with said non-emission area and debouching within a diffusion length distance from an emission area for allowing diffusion of work-function-lowering particles from said reservoir to said emission area.
Abstract:
An electron gun provides an improved focusing characteristic of electron beams surely and effectively, and permits position alignment to be relatively easy in assembling thereof. In an electron gun which includes a cathode for discharging electrons and a plurality of grids each having electron passing-through holes for guiding the electrons discharged from the cathode unidirectionally, an electron dischargeable region is formed in an electron discharging plane of the cathode, which is band-shaped. In addition, the length of the band-shaped area constituting the electron dischargeable region on its shorter side is less than 80% of the diameter of the area from where electrons are discharged when a practical maximum current is taken out without limiting the electron dischargeable region.
Abstract:
A method of fabricating a cathode member or pellet is provided, which realizes the sufficiently large increase of the electron emission capability by the current activation process and that prevents the maximum cathode current from being lowered as long as an electron emissive agent exists in the cathode member. First, (a) a nickel powder and a rare-earth-metal oxide powder are provided. (b) The nickel powder and the rare-earth-metal oxide powder are uniformly mixed together, thereby producing a first powder mixture. (c) The first powder mixture is heated in a hydrogen atmosphere, an inert atmosphere, or a vacuum atmosphere, thereby producing an intermetallic compound of nickel and the rare-earth metal in the first powder mixture. (d) The first powder mixture containing the intermetallic compound is uniformly mixed with an electron-emissive agent powder, thereby producing a second powder mixture. (e) The second powder mixture is sintered by a HIP process, thereby forming a cathode member. The intermetallic compound produced in the first powder mixture has a function to chemically decompose the electron emissive agent to thereby increase the electron emission performance of the electron emissive agent.