摘要:
A high-sensitivity receiver may be made by using multiple demodulators to demodulate a given signal. For example, the receiver may use a first demodulator to demodulate an input signal into a first sequence of soft bits and a second demodulator to demodulate the same input signal into a second sequence of soft bits. The two sequences of soft bits may then be compared and combined to create a sequence of hard bits. For example, in some embodiments, a soft bit combiner may combine the two sequences of soft bits into a third sequence of soft bits, which may then be input into a decoder to produce the final decoded hard bits. The secondary demodulator may be less complex, less expensive, demand less power, and/or require fewer computational resources when operating, than the first demodulator.
摘要:
The invention relates to an anti-demodulator circuit which is fundamentally built up in the same way as a demodulator circuit but, instead of a bandpass filter as generally used in a demodulator, comprises a notch filter which receives an input signal comprising a useful signal and an interference signal, and generates a filtered signal. The notch filter has a center frequency which approximately corresponds to the frequency of the input signal so as to suppress at least a part of the useful signal. The anti-demodulator circuit further comprises a mixer circuit which receives the filtered signal and a phase-shifted input signal and supplies a demodulated output signal which substantially corresponds to the interference signal.The invention can be particularly used in connection with a filtering device for suppressing interference signals based on adjacent channel disturbances in FM radios, in which the bandwidth of the filtering device is controlled in dependence upon the output signal of the anti-demodulator circuit.
摘要:
An approach for demodulating a frequency-modulated signal involves processing a frequency-modulated signal with a phase shifter network to provide a demodulated signal that has a relatively constant amplitude around the center frequency of the frequency-modulated signal and that exhibits a relatively linear phase change over an operational frequency range. Embodiments of the invention include a phase shifter network, using N number of cascaded all-pass filters, that receives as an input a limited amplitude signal and outputs a phase-shifted limited amplitude signal that is mixed with the limited amplitude signal. The phase shifter network may also comprise a low-pass bessel filter.
摘要:
In order to process an input signal exhibiting a frequency modulation about an intermediate frequency, the demodulator includes a first mixer for producing a first signal exhibiting the frequency modulation about a transposition frequency lower than the intermediate frequency; a switched-capacitor phase-shifter receiving the first signal so as to produce a second signal exhibiting, with respect to the first signal, a phase-shift varying substantially linearly with frequency about the transposition frequency; two substantially identical low-pass filters receiving the second signal and the first signal respectively; and a second mixer for mixing the signals produced by the first and second low-pass filters, in order to deliver a baseband output signal.
摘要:
A dual mode quadrature detector (15) uses the same components for both narrow band and wide band operation and provides an output amplitude which is independent of the mode of operation selected. A multiplier (32) provides a demodulated output signal (16) which is responsive to the phase difference between a signal (14) at one input (32A) and a phase shifted version of the signal at the other input (32B). A capacitor (30) and a phase shifting circuit (31) provide the phase shifted version of the signal. The phase shifting circuit (31) is responsive to a mode control signal (24) for determining the phase shift which is provided. The phase shift at the maximum frequency deviation of the narrow band signal is the same as the phase shaft at the maximum deviation of the wide band signal so that the output amplitude from the detector (15) is the same for both narrow band and wide band operation. The phase shift provided is controlled by varying the quality factor (Q) of the phase shifting circuit (31). This is achieved by controlling the amount of resistance placed in parallel with a tuned circuit (33, 34) in the phase shifting circuit (31). A higher Q is obtained by using a higher resistance, and a lower Q is obtained by using a lower resistance.
摘要:
A four quadrant multiplier circuit having a high dynamic range and capable of operating at low voltages includes a dual transconductance amplifier circuit (TAC) consisting of NPN transistors (20 to 23 and 64 to 67), coupled to a first input port (36), first and second folded Darlington circuits (57,58), and a resistive element (78). Each Darlington circuit includes first and second NPN transistors (68,70 and 69,71) whose emitter-collector paths are connected in series and a third PNP transistor (72,73) having its emitter-collector path connected between the collector of the first transistor (68,69) and the base electrode of the second transistor (70,71). The emitter-collector junction (76,77) of the first and second transistors (68,70 and 69,71) is connected to the base electrode of the third transistor (72,73). The resistive element (78) is connected between the base electrodes of the third transistors (72,73). A second input port (56) is connected to the base electrodes of the first transistors (68,69). The emitter currents of the dual transconductance amplifier are supplied by way of current mirror circuits (80,81) from the emitter currents of the second transistors (70,71). The transconductance amplifier circuit (TAC) may be of any suitable type which has its transconductance linearly proportional to its emitter currents. In a refinement of the circuit, the current-to-voltage converter function of the current mirrors is carried out by the second transistors (70,71) and the transistors (82,83) of the current mirror circuits (80,81) are omitted.
摘要:
A four-quadrant multiplier based on a Gilbert cell is utilized to multiply several signals by a similar signal. The transistors in two pairs of coupled differential amplifiers of one input terminal of the inner multiplier that is activated like a Gilbert cell by way of a diode-and-transistor section have several emitters. Each pair of emitters in the right and the left branch of the miltiplier can be oppositely activated by way of a source of variable current or by way of a series of a transistor and a source of current. To process square-wave signals, the source of variable current is a source that can be engaged and disengaged by I.sup.2 L gates.
摘要:
An FM signal demodulator for converting the frequency of an input signal to a corresponding voltage. The demodulator includes a delay circuit responsive to the input signal for delaying the phase of the input signal by a fixed time, an exclusive-OR gate responsive to the input signal and the delayed phase signal from the delay circuit for outputting a pulse signal having a duration corresponding to the fixed time and an LPF responsive to the pulse signal for generating an output signal having a level which changes in response to changes in the frequency of the input signal.
摘要:
An FM detection circuit utilizes a first multiplier and phase shift circuit to demodulate an FM signal. The output signal also contains harmonic distortion as a result of the demodulation process. A gain control circuit is included to provide a first gain control signal to the first multiplier which adjusts the magnitude of the output signal of the FM detection circuit in such a manner as to substantially eliminate the harmonic distortion. The gain control circuit uses a second multiplier to generate an output signal proportional to the square of the output signal of the phase shift circuit which is then compared to a constant current to produce an error signal proportional to the harmonic distortion. The error signal controls the magnitude of the first gain control signal such that the output signal of the FM detection circuit is proportional to the deviation of the FM signal from its center frequency.
摘要:
A circuit for compensating change in delay time of a delay circuit due to variation in temperature employs, as a phase shifter of a pulse FM detection circuit, a delay circuit whose delay time is subject to change due to variation in temperature and can be controlled in response to a control signal. A dc component in an output of this pulse FM detection circuit is compared with a preset reference value and a resulting comparison output is used for controlling the delay time of the delay circuit and thereby compensating the temperature characteristic of the delay time. In a device using plural delay circuits, these delay circuits can be disposed on the same substrate and the delay times of these delay circuits can be controlled by the same comparison output. Since a signal which is handled by a delay circuit is utilized for the temperature compensation, an accurate temperature compensation can be realized with a simple circuit construction.