Abstract:
An integrated circuit comprising a mechanical device for electrical switching comprising a first assembly being thermally deformable and having a beam held at at least two different locations by at least two arms, the beam and the arms being metal and disposed within the same metallization level, and further comprising at least one electrically conducting body. The first assembly has a first configuration at a first temperature and a second configuration at a second temperature different from the first temperature. The beam is out of contact with the electrically conducting body in one configuration in contact with the body in the other configuration. The beam establishes or breaks an electrical link passing through the said at least one electrically conducting body and through the said beam in the different configurations.
Abstract:
A method is provided for managing the operation of a circuit operating in a slave mode. The circuit is connected to a bus having at least two of wires and a priority logic level. The slave circuit imposes the priority logic level on a first wire of the bus. While imposing, the slave circuit detects a possible conflict on the first wire resulting from a forcing, external to the slave circuit, of the first wire to another logic level. Upon detecting a conflict, the slave circuit is placed in a state stopping the sending by the circuit of any data over the bus while leaving the circuit listening to the bus.
Abstract:
Disclosed herein is a device comprising a protection circuit configured to protect against a polarity reversal of the input DC power supply voltage, the protection circuit comprising an N-channel main transistor having a source coupled to an input terminal and having a drain coupled to an output terminal, a command circuit configured to render the main transistor blocked in the event of a polarity reversal and conducting otherwise, and a control circuit configured to dynamically adjust the bias of substrate regions of respective components connected to the main transistor by connecting the substrate regions either to the source or to the drain of the main transistor according to the value of the voltages present at the source and the drain of the main transistor and the type of conductivity of the substrate regions.
Abstract:
A method for manufacturing an integrated circuit includes forming in a substrate a measuring circuit sensitive to mechanical stresses and configured to supply a measurement signal representative of mechanical stresses exerted on the measuring circuit. The measuring circuit is positioned such that the measurement signal is also representative of mechanical stresses exerted on a functional circuit of the integrated circuit. A method of using the integrated circuit includes determining from the measurement signal the value of a parameter of the functional circuit predicted to mitigate an impact of the variation in mechanical stresses on the operation of the functional circuit, and supplying the functional circuit with the determined value of the parameter.
Abstract:
An integrated circuit includes active circuitry disposed at a surface of a semiconductor body and an interconnect region disposed above the semiconductor body. A thermoelectric material is disposed in an upper portion of the interconnect region away from the semiconductor body. The thermoelectric material is configured to deliver electrical energy when exposed to a temperature gradient. This material can be used, for example, in a method for detecting the repackaging of the integrated circuit after it has been originally packaged.
Abstract:
The disclosure relates to a device for supplying to at least one integrated circuit a high voltage for erasing and/or programming of a memory. The device includes at least one contact terminal linked to at least one contact terminal of the integrated circuit, a monitor for monitoring a data signal received by the integrated circuit and detecting in the data signal a write command of the memory, and a voltage supplier for applying the high voltage to a terminal of the integrated circuit when a write command of the memory has been detected by the monitor.
Abstract:
A method of generating electrical energy in an integrated circuit that may include setting into motion a (3D) three-dimensional enclosed space in the integrated circuit. The 3D enclosed space may include a piezoelectric element and a free moving object therein. The method may also include producing the electrical energy from impact between the free moving object and the piezoelectric element during the motion.
Abstract:
The disclosure relates to an integrated circuit comprising at least two memory cells formed in a semiconductor substrate, and a buried gate common to the selection transistors of the memory cells. The buried gate has a first section of a first depth extending in front of vertical channel regions of the selection transistors, and at least a second section of a second depth greater than the first depth penetrating into a buried source line. The lower side of the buried gate is bordered by a doped region forming a source region of the selection transistors and reaching the buried source line at the level where the second section of the buried gate penetrates into the buried source line, whereby the source region is coupled to the buried source line.
Abstract:
An antenna circuit for a device of transmission/reception by inductive coupling, including a first inductive element in parallel with a capacitive element and, between each node of the parallel association and two terminals of a switch, a second inductive element.
Abstract:
System, method, and circuitry for generating content for a programmable computing device based on user-selected configuration information. A settings registry is generated based on the user's selections. The settings registry and the user selected configuration information is utilized to generate the content, such as code, data, parameters, settings, etc. When the content is provided to the programmable computing device, the content initializes, configures, or controls one or more software and hardware aspects of the programmable computing device, such as boot sequence configurations, internal peripheral configurations, states of the programmable computing device, transitions between states of the programmable computing device, etc., and various combinations thereof.