Abstract:
Fiber scanning optical probes and medical imaging apparatuses including the same are provided. The fiber scanning optical probe includes an optical fiber; an actuator attached onto the optical fiber and configured to drive the optical fiber at a driving resonance frequency; a mass provided at a side of the optical fiber and configured to control the driving resonance frequency; and a frequency separator provided on a portion of the optical fiber between the actuator and the mass, the frequency separator being configured to separate the driving resonance frequency into separate resonance frequencies.
Abstract:
Provided is a haptic interface for allowing various information exchange in addition to transmitting accurate force information to an operator, and more particularly, a haptic device capable of transmitting more various kinds of information by transmitting necessary information to an operator by means of different kinds of sensations such as sight sensation, acoustic sensation, smell sensation, taste sensation or the like in addition to tactile sensation.In addition, provided is a haptic device, which may have an input point and an output point in accordance with each other or in discordance from each other, may have various output points to give a feedback to various points desired by an operator, may give a feedback by adjusting intensity of an output instead of outputting simple on/off signals when providing information to an operator by means of a feedback, and allows a feedback output intensity to be calculated in various ways according to an input amount and fed back to the operator when the input amount input through a haptic interface by the operator is adjustable.
Abstract:
A method of reconstructing a tomographic image in a medical imaging apparatus includes: acquiring a first image of an object and a second image of the object corresponding to an image to be reconstructed; determining, in the first image, a reference region corresponding to a unit region in the second image; and updating data in the unit region based on data contained in the reference region. Thus, a medical image having both high spatial resolution and high temporal resolution is reconstructed to have substantially reduced artifacts.
Abstract:
A method for generating an image by using a medical imaging apparatus includes acquiring first slab data which relates to a first imaging slab, acquiring second slab data which relates to a second imaging slab at a position which is different from a position of the first imaging slab, and generating a restored image by using data from among the acquired first slab data and data from among the acquired second slab data in slices which correspond to a same position on an object.
Abstract:
A catalyst slurry including a catalyst material, a polymer binder, a plurality of inorganic particles, wherein each particle includes an ionic group, a hydrophilic oligomer, and a solvent.
Abstract:
A mobile apparatus includes a sensing handler and a processing handler. The sensing handler includes a plurality of sensing operators. The sensing operator senses data during a sensing time corresponding to a size of C-FRAME and stops sensing during a skip time. The C-FRAME is a sequence of the sensed data to produce a context monitoring result. The processing handler includes a plurality of processing operators. The processing operator executes the sensed data of the sensing operator in a unit of F-FRAME. The F-FRAME is a sequence of the sensed data to execute a feature extraction operation.
Abstract:
A semiconductor of which a substance such as a semiconductor photocatalyst is uniformly coated on the surface thereof with a graphitic carbon film and a method of fabricating the same are disclosed. According to the inventive method, a graphitic carbon film having a thickness of 1 nm or less is uniformly formed on the surface of the semiconductor by performing hydrothermal synthesis and pyrolysis on glucose, so as to keep the original structure crystallinity of the semiconductor photocatalyst to be a support of the carbon film.
Abstract:
Disclosed are a magnetic resonance (MR) image generating method and apparatus that perform imaging on an MR image by using a radio frequency (RF) multi-coil which includes a plurality of channel coils. The MR image generating method includes generating a plurality of pieces of K-space completion data which respectively correspond to the plurality of channel coils and converting the plurality of pieces of K-space completion data to a frequency domain in order to generate a plurality of pieces of image data, combining the plurality of pieces of image data in order to acquire an MR image, and acquiring phase information which relates to the MR image based on the plurality of pieces of image data and the plurality of pieces of K-space completion data.
Abstract:
Provided is a flexible device, which includes a flexible substrate, a plurality of electrode lines provided on the flexible substrate and configured to contact the following anisotropic conductive film and then extend to a side of the flexible substrate, an anisotropic conductive film configured to contact the electrode line and laminated on the flexible substrate, a plurality of bumps provided on the anisotropic conductive film, and a circuit board having an electronic device provided at one side thereof and configured to contact the plurality of bumps.
Abstract:
Disclosed is a method for transmitting integrated packet data by a relay station (RS) in a multi-hop relay communication system, including: integrating a plurality of packet data received from mobile stations (MSs) and determining a data integration scheme for transmitting the integrated data to base station (BS); receiving packet data from MSs, classifying the received packet data into one or more integration packet classes according to the determined data integration scheme, and storing the same; determining QoS (Quality of Service) requirements and a MCS (Modulation and Coding Scheme) level of the stored integration packet classes; calculating required resource according to the determined MCS level and requesting an allocation of the resource from the BS; receiving an approval for resource allocation from the BS, and modulating and coding the integrated packet class, mapping the same to the resource to configure an integrated packet; and transmitting the configured integrated packet to the BS.