Abstract:
An electric motor for a motor-driven compressor is provided. The electric motor includes a stator and a rotor. The stator is fixed to a housing. The rotor is arranged outward of the stator. The rotor is mounted on a rotary shaft to rotate integrally with the rotary shaft. The stator includes slots and a stator coil wound about the slots. The rotor includes a rotary support and a magnet. The rotary support is fixed to the rotary shaft to rotate integrally with the rotary shaft. The magnet is supported by the rotary support. The arrangement of the magnetic poles of the magnet in the circumferential direction is a Halbach array.
Abstract:
A brushless motor has a 2P3S×n structure, in which a ratio (W) of a circumferential width (Wm) of each of magnets to a length (Wp) of a chord formed between endpoints of an arc with a center angle θp=360°/pole-number 3n, the arc being included in an inner-diameter circle C2 of each of the magnets, is in a range of 0.76
Abstract:
A method for making and magnetizing an un-magnetized mechanically keyed permanent magnet rotor that can be magnetized in a magnetization fixture, without regard to the angular position of the rotor in the magnetizing fixture, and nevertheless result in a permanent magnetic field angularly synchronized to said keyed rotor comprises the steps of providing an annular permanent magnet or annular permanent magnet rotor body; a mechanically keyed rotor shaft; means for aligning and assembling the un-magnetized permanent magnet or permanent magnet rotor body and the mechanically keyed rotor shaft during assembly to form an assembled rotor; and magnetization thereof.
Abstract:
An electric motor includes an upper housing, a lower housing including a flange for mounting the upper housing thereon and a cone-shaped portion extending away from the flange and the upper housing. The electric motor further includes a stator assembly formed of a first core having a first height and fitted into the upper housing, a rotor assembly rigidly joined to a shaft to rotate therewith in the stator assembly and formed of a second core having a second height, and a hub connected to a lower end of the shaft to rotate therewith in relation to the cone-shaped portion. The hub is configured to secure an operable implement to the electric motor. The second height is greater than the first height.
Abstract:
A magnet for a generator is provided. The magnet includes a base magnet with a main surface having a length and a width and a skewed magnet module arranged at the main surface. A rotor of a generator including the magnet is provided as well as a generator with a stator and rotor including the magnet.
Abstract:
A rotor assembly for an electric device includes a laminated stack of electric steel sheets defining a plurality of longitudinally extending grooves. A conductor bar is disposed within each of the grooves. Each of the conductor bars includes a first end and a second end extending longitudinal outward from opposing axial end surfaces of the laminated stack. The first end and the second end of the conductor bars include a textured surface having micro-sized surface irregularities. A first end ring is cast in place over the first ends of the conductor bars, and a second end ring is cast in place over the second ends of the conductor bars. The textured surface in the first ends and the second ends of the conductor bars mechanically interlocking with the cast in place first end ring and second end ring respectively.
Abstract:
An electric motor, especially a brushless PMDC motor, has a stator and a rotor rotatably installed inside of the stator. The stator has a housing with an open end, an end cap fixed to the open end of the housing, a stator core fixed to an inner surface of the housing, and windings wound on the stator core. The rotor includes a plurality of permanent magnetic poles. The housing has a flange bent inwardly from the open end of the housing and abutting against the end cap inwardly and axially to thereby fix the end cap to the housing. The length of the flange measured along the circumferential direction of the housing is greater than half of that of the housing.
Abstract:
Apparatuses employing suspended rotors are provided. In one embodiment, an apparatus includes a housing forming an internal cavity and a rotor disposed in the internal cavity of the housing. The rotor has a first end and a second end. The apparatus also includes a first end ring coupled to the first end of the rotor and a second end ring coupled to the second end of the rotor. The first end ring and the second end ring are each magnetically repulsed from the housing to cause the rotor to be suspended relative to the housing.
Abstract:
A method of forming a rotor of an electromagnetic device includes substantially filling a channel defined by a lamination stack and having a curvilinear cross-section with a slurry including a polymer and a plurality of permanent magnetic particles each having a magnetic moment, applying a magnetic field having a plurality of magnetic field lines arranged in a predetermined geometry to the slurry in situ within the channel to thereby align the magnetic moment of each permanent magnetic particle along the field, and curing the polymer to permanently align the magnetic moment of each permanent magnetic particle along the field and thereby dispose a permanent magnet within the channel to form the rotor, wherein the permanent magnet abuts the stack and substantially fills the channel whereby the channel is substantially free from an air gap between the stack and the permanent magnet. A rotor formed by the method is also disclosed.
Abstract:
A stator core is comprised of first and second stator core pieces that are arranged to overlap each other in the axial direction of the stator core. The first stator core piece includes first protrusions, each of which is formed on one circumferential side of a corresponding tooth portion of the stator core, and first slot opening portions that open on the radially inner surface of the first stator core piece. The second stator core piece includes second protrusions, each of which is formed on the other circumferential side of a corresponding tooth portion, and second slot opening portions that open on the radially inner surface of the second stator core piece. For each slot of the stator core, a corresponding pair of the first and second slot opening portions which communicate with the slot are offset from each other in the circumferential direction of the stator core.