Abstract:
A large round baler includes a bale forming assembly and a chassis constructed as separate units which, when disconnected and displaced from each other either entirely at an interface between the units or by tilting one unit about a longitudinal axis at one side of the interface, permit one or more flexible endless baling elements to be mounted in place on the baling assembly. Cross beams, which extend between and interconnect the opposite side structures of the bale forming assembly are located such, that they do not obstruct the space required to slide the endless baling element(s) over the baling assembly and into engagement with the bale forming rolls. Mounting of the flexible endless baling element requires the removal of one or more baling element support rolls from opposite side structures of the baling assembly and/or from opposite arms of a tensioning assembly.
Abstract:
A mowing implement is equipped with a rotary cutter bar and utilizes right- and left-hand sets of converging drums to aid those cutting discs located outboard of opposite sides of a discharge zone to converge crop to the discharge zone. The inner two of each of the sets of converging drums are identical and have inverted bowl shaped lower end plates having conical surfaces which aid in lifting crop. The insides of the bowl-shaped converging drum end plates form voids, which together with flat horizontal ejector plates, mounted on respective cutter discs for sweeping beneath the inner two of each set of converging drums, keep crop from packing beneath these converging drums. Associated with each of the innermost ones of the inner pair of converging drums is a guide element defining a horizontal shelf located for guiding crop, elevated by the conical surfaces of the lower ends of the inner most converging drums, to the discharge passage. Crop that passes beneath the shelves is guided to locations of the discharge passage inward of respective side walls bordering the discharge passage by respective legs depending from the back sides of the shelves.
Abstract:
A reinforced grass catcher may be positioned adjacent a cutting unit of a grass mower, the reinforced grass catcher having a pair of sides, an upper panel and a lower panel, an opening between the upper panel and lower panel facing the cutting unit, and at least one retaining structure integrally formed with the lower panel adjacent the opening. The reinforcing member may be inserted through the retaining structure or structures. Each retaining structure may be a channel, passage, opening, cavity, groove, hollow, notch, slot, hole, indentation, tunnel, port, aperture or recess that is integral with the lower panel. The reinforcing member resists or limits warping or bending of the grass catcher at or near the opening. The reinforcing member prevents loss of grass clippings through a gap between the grass catcher and cutting unit.
Abstract:
A method for operating a mower comprises defining a reference axis of rotation at a desired point along a path segment of the mower. A controller orients wheels of the mower generally tangentially to a circular region about the reference axis. A drive motor applies rotational mechanical energy to one or more of the wheels to rotate the mower by a desired angular amount about the reference axis.
Abstract:
A receiver receives an electromagnetic signal via an antenna mounted on an antenna mast. A signal evaluator determines or measures a signal quality level associated with the received electromagnetic signal. The signal quality compares the determined signal quality level to a threshold minimum signal quality level. A current elevational position of the antenna mast is detected or tracked. The antenna mast is raised to a greater height than the current elevational position if the compared signal quality level is less than the threshold minimum signal quality level and if the current elevational position is less than a maximum height of the antenna mast.
Abstract:
A forage harvester chopper arrangement is located within a housing provided with an access door mounted for pivoting vertically between a chopping position, wherein access to the chopping arrangement is prevented, and a grinding position, permitting access to the chopping arrangement by a grinding arrangement. A locking arrangement is associated with the access door and an actuator is coupled to the access door and the locking arrangement by a linkage containing lost-motion means which operates such that when moving the access door to its grinding position, the locking arrangement is moved to its unlocked position prior to the access door being raised to its grinding position, and such that when returning the access door to its chopping position, the access door is closed before the locking arrangement is moved to its locked position.
Abstract:
A baler for making large parallelepiped bales includes a plunger drive and plunger arrangement wherein one or more load pins are located offset vertically from a centerline of a connecting rod or a mid-plane of the baling chamber. Such an arrangement permits load pins having the same range of measuring capacity to be used with balers of different sizes, with the amount of offset being changed for balers of different sizes. In one arrangement, load pins are offset vertically from the mid-plane of the plunger a distance sufficient to make it possible to measure differences in top-to-bottom reaction forces imposed on the plunger.
Abstract:
A large round baler includes a tensioning arm to which is mounted two cylindrical rolls between which extend a loop of each of a plurality of side-by-side, bale-forming belts. Two belt support pulleys are located in an upper region of the baling chamber above the tensioning arm, and alternate loops respectively of the plurality of bale-forming belts are respectively engaged about one and another of said two support pulleys, so as to form gaps between adjacent loops through which material entrapped in a given loop may exit.
Abstract:
A composite threshing element, for a rotor in an agricultural harvester crop processing unit, comprising a hollow support structure with at least one outwardly extending crop engaging portion, and a forwardly extending infeed element attachment feature. The rotor comprises a drum to which crop processing elements for an infeed section and a threshing section are affixed. The threshing element is bolted to a frusto-conical portion of the rotor drum, with a portion of an infeed element bolting to the infeed element attachment feature.
Abstract:
A cooling system for an agricultural vehicle, such as a tractor driven by an internal combustion engine includes a main cooling system containing a coolant. The cooling system includes a sorption cooling system which includes an evaporator for evaporating a refrigerant, a sorption chamber for the sorption of the refrigerant vapor, a desorption chamber for the desorption of the refrigerant from the sorbent, and a condenser for condensing the refrigerant. An exhaust gas stream from the engine is conducted to the desorption chamber to provide the heat necessary for the desorption. The evaporator is used for additional cooling of the coolant of the main cooling system and/or for cooling a second exhaust gas stream from the engine.