Abstract:
A method for the fabrication of organic electronic devices includes forming a fluoropolymer layer over a first area of a substrate and a first set of organic electronic devices. The first set of organic electronic devices are pre-fabricated on a second area of the substrate. The method further includes selectively removing the formed fluoropolymer layer from areas within the first area of the substrate by using a liquid solvent. The method further includes subsequent fabrication of organic electronic devices on the substrate.
Abstract:
A polymer comprising an optionally substituted repeat unit of formula (I): wherein R1 and R2 in each occurrence are independently selected from H or a substituent; R1 and R2 may be linked to form a ring; and A is an optionally substituted linear, branched or cyclic alkyl group.
Abstract:
Methods of metal-catalyzed polymerization are described using a metal catalyst of formula (III): wherein R3 in each occurrence is independently selected from C1-10alkyl and aryl that may be unsubstituted or substituted with one or more substituents; y is 0 or 2; and Z− is an anion. Methods described include Buchwald-type and Suzuki-type polymerization.
Abstract:
An organic light-emitting device comprising an anode (103); a cathode (109); a light-emitting layer (105) between the anode and the cathode; and an electron-transporting layer (107) comprising an electron-transporting material between the cathode and the light-emitting layer, wherein the cathode comprises a layer of a conducting material (109B) and a layer of an alkali metal compound (109A) between the electron-transporting layer and the layer of conducting material and wherein the electron-transporting material is a conjugated polymer comprising arylene repeat units.
Abstract:
A polymer containing an optionally substituted repeat unit of formula (I) wherein each R is the same or different and represents H or an electron withdrawing group, and each R1 is the same or different and represents a substituent.
Abstract:
We describe a lighting tile having a substrate bearing an electrode structure, the electrode structure comprising: a plurality of electrically conductive tracks disposed over said substrate; and an electrical connection region connecting to said plurality of tracks; wherein the height of said tracks tapers away from said connection region to compensate for a reduction in luminance from said lighting tile array from the electrical connection region which arises from a non-uniform voltage drop which appears along the tracks in use. Advantageously the tracks are fabricated by electroplating: then, as the rate of deposition is determined by the voltage drop along a track during plating, the height of the deposited tracks, and therefore their resistance, will match the profile required in operation to compensate for the reduction in luminance which would otherwise occur.
Abstract:
A compound of formula (I) wherein M is a transition metal; L is a ligand; x is at least 1; y is 0 or a positive integer; R1 in each occurrence is independently a substituent; R2 and R3 in each occurrence is independently H or a substituent, with the proviso that at least one of R1, R2 and R3 is a group X comprising at least one aryl or heteroaryl group. The compound of formula (I) may be used as a phosphorescent material in an organic light-emitting device.
Abstract:
A polymer comprising a repeat unit of formula (I): wherein R1 in each occurrence is independently H or a substituent, and the two groups R1 may be linked to form a ring; R2 in each occurrence is independently a substituent; Ar1 in each occurrence is independently an aryl or heteroaryl group that may be unsubstituted or substituted with one or more substituents; R3 in each occurrence is independently a substituent; each n independently is 0, 1, 2 or 3 with the proviso that at least one n=1; and each m is independently 0 or 1. The polymer may be a light-emitting 103 of an organic light-emitting device.
Abstract:
A method of monitoring an OLED production process for making an OLED device is disclosed. According to the method, at least one reference OLED device similar to said OLED device is fabricated. Said at least one reference OLED device has a layered structure corresponding to said OLED device and a range of hole injection and/or transport layer thicknesses. A spectral variation of a light output of said at least one reference OLED device with respect to variation in said hole injection and/or transport layer thickness is characterized. A said OLED device is partially fabricated by depositing one or more layers comprising at least said hole injection and/or transport layer and a thickness of said one or more layers is measured such that a light output for said partially fabricated OLED device can be predicted, in a target color space, from said measuring, using said characterized spectral variation.
Abstract:
There is disclosed a method for preparing a modified electrode for an organic electronic device, wherein said modified electrode comprises a surface modification layer, comprising: (i) depositing a solution comprising M(tfd)3, wherein M is Mo, Cr or W, and at least one solvent onto at least a part of at least one surface of said electrode; and (ii) removing at least some of said solvent to form said surface modification layer on said electrode.