Abstract:
An inverter with soft switching is used for a high step-up ratio and a high conversion efficiency. The inverter includes an isolation voltage-quadrupling DC converter and an AC selecting switch. The isolation voltage-quadrupling DC converter includes an active clamping circuit. By a front-stage converter circuit, a continuous half-sine-wave current is generated. By a rear-stage AC selecting switch, the half-sine-wave current is turned into a sine-wave current. Thus, electricity may be supplied to an AC load or the grid. The circuit is protected by isolating the low-voltage side from the high-voltage side. The conversion efficiency is high. The leakage inductance is low. The switch stress is low. The inverter is durable and reliable. Hence, the inverter is suitable for use in a photovoltaic system to increase the total conversion efficiency.
Abstract:
A retaining mechanism, used for retaining an electronic component including a support bracket having an end part formed with an engaging hole, includes a mounting block having a mounting hole for receiving the end part of the support bracket, and a through hole communicating with the mounting hole. A seat body covers the mounting block, and has a bolt hole communicating with and disposed above the through hole, and a limiting slot communicating with one side of the bolt hole. A locking bolt includes a shank disposed slidably in the bolt hole, and a stopper block connected transversely to the bottom portion and slidable upward and downward along the limiting slot. The shank has a bottom portion adapted to engage releasably the engaging hole when the through hole is aligned with the engaging hole.
Abstract:
A thermal magnetic engine and a thermal magnetic engine system are disclosed. The thermal magnetic engine includes a fixed element, a rotation element, working fluid and a fin structure. The rotation element includes a working material. The rotation element rotates relative to the fixed element. The working fluid flows through the rotation element and forms a temperature difference on the working material. The fin structure is disposed on the rotation element. The rotation element rotates along a rotating direction due to the temperature difference on the working material and/or due to the flowing of the first working fluid through the fin structure.
Abstract:
A thermo-magnetic power generation system includes a thermo-magnetic power generation device, a first circulating device, and a second circulating device. The first circulating device and the second circulating device are connected to the thermo-magnetic power generation device. The liquid is heated by the first circulating device and cooled by the second circulating device. The heated liquid and the cooled liquid transmitted to the thermo-magnetic element are recycled by the first circulating device and the second circulating device.
Abstract:
An engineering analysis tool comprises a unified resource model-based (URM) objective and tool mapping capability for linking engineering analysis objectives to analysis tools. A Markov chain-based analysis plan generator (APTG) for reusing engineering analysis plans may be included in the engineering analysis tool. Further, the engineering analysis tool comprises a graphic symptom capturer (GSC) that auto-captures engineering perceived fault symptoms from engineering data analysis (EDA) tools.
Abstract:
A photovoltaic powered system and an alternating current (AC) module thereof are disclosed. The photovoltaic powered system provides a direct current (DC) power through a photovoltaic module and converts the DC power into an AC power, which is grid-connected to an AC utility power. The AC module of the photovoltaic powered system produces a continuous quasi-sinusoidal current and the quasi-sinusoidal current is converted into a sinusoidal current. The high-frequency harmonic components of the sinusoidal current are filtered to produce a sinusoidal output current in phase with the AC utility power, thus realizing the maximum power point tracking (MPPT) of the photovoltaic module and feeding unity-power-factor power into the AC utility power.
Abstract:
A broadband planar inverted-F antenna includes a first radiation conductor, a second radiation conductor and a third radiation conductor. The first radiation conductor includes a first inclined-plane portion and a feeding point. The feeding point is located at one end of the first inclined-plane portion. The second radiation conductor is connected to the first radiation conductor at the feeding point. The third radiation conductor is connected to the first radiation conductor, and includes a second inclined-plane portion and a ground point. The second inclined-plane portion is separated from and facing to the first inclined-plane portion. The ground point is located at one end of the second inclined-plane portion and facing to the feeding point, wherein the distance between the first inclined-plane portion and the second inclined-plane portion is gradually increased from the part near the feeding point along a direction departing from the feeding point.
Abstract:
A lens device is disclosed. The lens device includes a fixed lens barrel, a rotating lens barrel, and a sensor. The rotating lens barrel is sleeved within the fixed lens barrel. The sensor is disposed within the fixed lens barrel for detecting the position of the rotating lens barrel.
Abstract:
An antenna is disclosed, which comprises: a substrate with a first surface and a second surface; a first radiation unit, disposed on the first surface; an insulating unit, disposed on the first surface on top of the first radiation unit; a first feed point, formed on the second surface and electrically connected to the first radiation unit; a grounding unit, disposed coplanar and connected with the first radiation unit; a first gap, formed between the first radiation unit and the grounding unit; and a second feed point, formed on the second surface and electrically connected to the grounding unit; wherein, as the second surface with the two feed points disposed thereon is adjacent to at least a metallic component and the radiation units are disposed on the first surface, the radiation units do not directly face the metallic component and thus prevent the same from being interfered by metallic shielding.
Abstract:
A memory structure including a memory cell is provided, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. At least one of the first charge storage structure and the second charge storage structure includes two charge storage units which are physically separated. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source and drain and a second source and drain are disposed on the first dielectric layer and located at two sides of the channel layer.