Abstract:
An azeotrope-like composition consisting essentially of 1,1,2,3-tetrachloropropene and hydrogen fluoride is provided, as well as methods that involve such an azeotrope-like composition.
Abstract:
Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF═CH2 (1234yf). In certain preferred embodiments the processes comprise first exposing a compound of Formula (IA) C(X)2═CClC(X)3 (IA) where each X is independently F, Cl or H, preferably CCl2═CClCH2Cl, to one or more sets of reaction conditions, but preferably a substantially single set of reaction conditions, effective to produce at least one chlorofluoropropane, preferably in accordance with Formula (IB): CF3CClX′C(X′)3 Formula (IB) where each X′ is independently F, Cl or H, and then exposing the compound of Formula (IB) to one or more sets of reaction conditions, but preferably a substantially single set of reaction conditions, effective to produce a compound of Formula (II) CF3CF═CHZ (II) where Z is H, F, Cl, I or Br.
Abstract:
Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF═CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2═CClCH2Cl (which may be purchased or synthesized from 1,2,3-trichloropropane) is fluorinated (preferably with HF in gas-phase in the presence of a catalyst) to synthesize a compound such as CF3CCl═CH2, preferably in a 80-96% selectivity. The CF3CCl═CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf, preferably in a gas-phase catalytic reaction using activated carbon as the catalyst. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl═CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3. The intermediates are preferably isolated and purified by distillation and used in the next step without further purification, preferably to a purity level of greater than about 95%.
Abstract:
Provided are azeotropic and azeotrope-like compositions of 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and hydrogen fluoride (HF). Such azeotropic and azeotrope-like compositions are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
Abstract:
A method for preparing 2,3,3,3-tetrafluoroprop-1-ene comprising (a) providing a starting composition comprising at least one compound having a structure selected from Formulae I, II and III: CX2═CCl—CH2X (Formula I) CX3—CCl═CH2 (Formula II) CX3—CHCl—CH2X (Formula III) wherein X is independently selected from F, Cl, Br, and I, provided that at least one X is not fluorine; (b) contacting said starting composition with a first fluorinating agent to produce a first intermediate composition comprising 2-chloro-3,3,3-trifluoropropene and a first chlorine-containing byproduct; (c) contacting said first intermediate composition with a second fluorinating agent to produce a second intermediate composition comprising 2-chloro-1,1,1,2-tetrafluoropropane and a second chlorine-containing byproduct; and (d) catalytically dehydrochlorinating at least a portion of said 2-chloro-1,1,1,2-tetrafluoropropane to produce a reaction product comprising 2,3,3,3-tetrafluoroprop-1-ene.
Abstract:
Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY═CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
Abstract:
Provided are ternary azeotropic and azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb), and hydrogen fluoride (HF). Such azeotropic and azeotrope-like compositions are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
Abstract:
This invention achieves a catalyst life improvement for the catalyzed vapor phase reaction of 1,1,1,3,3-pentachloropropane with hydrogen fluoride to form 1-chloro-3,3,3-trifluoropropene by introducing an oxygen co-feed into the fluorination reactor. By introduction of an oxygen co-feed to the reactor feed, the catalyst life was extended a minimum of two-fold (2×).
Abstract:
Disclosed is a process for the preparation of fluorinated olefins. In preferred embodiments C3 olefins are produced by methods comprising contacting a compound of the Formula (I) C(R1aR2bR3c) (I) with a compound of Formula (II) C(R1aR2bR3c)Cn(R1aR2bR3c) II wherein R1a, R2b, and R3c are independently a hydrogen atom or a halogen selected from the group consisting of fluorine; chlorine, bromine and iodine, provided that the compound of formula I has at least three halogen substituents and that said at three halogen substituents comprise at least one fluorine; a, b and c are independently=0, 1, 2 or 3 and (a+b+c)=2 or 3; and n is 0 or 1, under conditions effective to produce at least one C3 fluoroolefin.
Abstract translation:公开了一种制备氟化烯烃的方法。 在优选实施方案中,C3烯烃通过以下方法制备:包括使式(I)C(R 1a R 2b b C 3)(I)的化合物与式(II)的化合物C(R1aR2bR3c)Cn(R1aR2bR3c)II的化合物接触,其中R1a,R2b和R3c 独立地为氢原子或选自氟的卤素; 氯,溴和碘,条件是式I化合物具有至少三个卤素取代基,并且在三个卤素取代基上含有至少一个氟; a,b和c独立地为= 0,1,2或3,(a + b + c)= 2或3; 在有效产生至少一种C3氟代烯烃的条件下,n为0或1。