Abstract:
A method and system for automatic magnetic resonance (MR) volume composition and normalization is disclosed. In one embodiment, a plurality of MR volumes is received. A composite MR volume is generated from the plurality of MR volumes. Volume normalization of the composite MR volume is then performed to correct intensity inhomogeneity in the composite MR volume. The volume normalization of the composite MR volume may be performed using template MR volume or without a template MR volume.
Abstract:
A set formed of a scleral buckle and an encircling band is provided for use in connection with retinal detachment surgery to enable the implantation of both the scleral buckle and encircling band free of any suture. A self-assembling scleral buckle-encircling band combination is secured in place by surface scleral tunnels operative as belt loops to enable the securing of a scleral buckle and encircling band on the eyeball to exert an intended indentation effect for treatment of retinal detachment.
Abstract:
A method for personalizing content for a particular user in a computing system comprising a user interface configured to display content. The method comprises identifying one or more features of a short term profile of a user that are not included in a long term profile of the user, using the one or more features to identify one or more third party profiles having features that substantially match the one or more features of the user's short term profile, accessing the identified one or more third party profiles, and providing one or more content items included in the third party profile to the user, the one or more content items having associated features that match the one or more features of the short term profile. An alternative method comprises accessing one or more third party profiles that are not a profile of the user, and using the accessed third party profile to identify a plurality of content items for recommendation to the user based on a feature set of the third party profile.
Abstract:
A method and system for automatic detection and volumetric quantification of bone lesions in 3D medical images, such as 3D computed tomography (CT) volumes, is disclosed. Regions of interest corresponding to bone regions are detected in a 3D medical image. Bone lesions are detected in the regions of interest using a cascade of trained detectors. The cascade of trained detectors automatically detects lesion centers and then estimates lesion size in all three spatial axes. A hierarchical multi-scale approach is used to detect bone lesions using a cascade of detectors on multiple levels of a resolution pyramid of the 3D medical image.
Abstract:
The present invention provides a method and system for vascular landmark detection in CT volumes. A CT volume is received and an initial position of a plurality of vascular landmarks is detected. The initial position of each of the plurality of vascular landmarks is then adjusted in order to position each vascular landmark inside a vessel lumen. A new position of each of the plurality of vascular landmarks representing the adjusted initial positions is output.
Abstract:
Provided herein are bimodal porous polymer microspheres comprising macropores and micropores. Also provided herein are methods and apparatus for fabrication such microspheres. Further provided herein are methods of using bimodal porous polymer microspheres.
Abstract:
A programmable non-volatile device is made which uses a floating gate that functions as a FET gate that overlaps a portion of a source/drain region. This allows a programming voltage for the device to be imparted to the floating gate through capacitive coupling, thus changing the state of the device. The invention can be used in environments such as data encryption, reference trimming, manufacturing ID, security ID, and many other applications.
Abstract:
A programmable non-volatile device is operated with a floating gate that functions as a FET gate that overlaps a portion of a source/drain region and allows for variable coupling through geometry and/or biasing conditions. This allows a programming voltage for the device to be imparted to the floating gate through variable capacitive coupling, thus changing the state of the device. Multi-state embodiments are also possible. The invention can be used in environments such as data encryption, reference trimming, manufacturing ID, security ID, and many other applications.
Abstract:
A method and system for classifying a contrast phase of a 3D medical image, such as a computed tomography (CT) image or a magnetic resonance (MR) image, is disclosed. A plurality of anatomic landmarks are detected in a 3D medical image. A local volume of interest is estimated at each of the plurality of anatomic landmarks, and features are extracted from each local volume of interest. The contrast phase of the 3D volume is determined based on the extracted features using a trained classifier.