摘要:
The invention relates to a method according to which a profile consisting of a shape-memory alloy is placed into concrete, or a concrete to be reinforced is roughened on the outside, then profiles (2) consisting of a shape-memory alloy are fastened to the roughened outside (9) of the structure (6) and a cementitious matrix is applied to the roughened outside (9) to cover the profiles (2). After the cementitious matrix has set, said profiles (2) produce a contraction force and thus a tension as a result of the input of heat. The mortar covering layer (16) thereby acts as a reinforcement layer owing to the interlocking of the mortar covering layer (16) with the roughened outside (9) of the structure (6). The profiles (2) run in an outer mortar as a reinforcement layer (16) of the outside of a structure along the outside of the structure inside the mortar or reinforcement layer (16). A structure can also be prepared for a prestress in the equipped mortar or reinforcement layer by the input of heat, in that electrical cables (3) are routed from the end regions thereof to the outside of the mortar or reinforcement layer (16) or the end regions of the electrical cables (3) are accessible by removing inserts (5).
摘要:
The method relates to the preparation of a TEM lamella from a structured sample, in particular of a microelectronic device, which has a location to be examined, situated at an unknown position. Firstly, the structural element within which the region to be examined is situated is prelocalized. Afterwards, the TEM lamella is sectioned by means of an ion beam of an FIB apparatus with a thickness such that the entire structural element is contained in the TEM lamella. This method considerably increases the probability that the location to be examined will actually be situated in the TEM lamella, without the sample or lamella having to be transported too often.
摘要:
The present invention is directed to a shear-thinning gel composition for producing a dry, water-stable and electronically conductive ink, comprising (a) dispersed electrically conductive graphite flake particles and (b) at least one further type of electronically conductive particles selected from carbon black and conductive pyrolyzed plant carbon components in a specific ratio of (a) to (b) as well as (c) a dissolved binder based on or consisting of shellac dissolved in a suitable solvent, where-in the ratio of the total of the electrically conductive particles (a)+(b) and the dissolved binder (c) and the weight proportion of the electrically conductive particles in the composition are specified. The invention further relates to the dried and electronically conductive inks, methods for producing the gel compositions and the use of these gel compositions for preparing, optionally ink-jet printing or robocasting 2D or 3D print products, in particular for preparing electronic devices, such as, for example, flexible electronic devices, biosensors, logic and memory devices, supercapacitors, batteries, flexible batteries, capacitive sensors, RFID tags, and smart packaging.
摘要:
The synthetic antiferromagnet disk-shaped particle comprises a first ferromagnetic layer, a second ferromagnetic layer and a non-magnetic interlayer arranged between the first and the second ferromagnetic layer, wherein each of the first and the second ferromagnetic layer comprises a uniaxial magnetic anisotropy in the plane of the ferromagnetic layers such that the switching fields from an antiferromagnetic alignment of the first and the second ferromagnetic layer to a ferromagnetic alignment (HAF→F) and from the ferromagnetic alignment to the antiferromagnetic alignment (HF→AF) fulfill the condition
摘要:
Described herein are compounds for use in coating compositions and methods of using the same. Also described herein is a method of treating metal products (e.g., aluminum alloy products), including applying the coating composition to at least one surface of the metal product. Further described herein is a joined structure, including the coated aluminum alloy product and another metal or alloy. The coating compositions enhance the bond performance of the joined structures.
摘要:
A solid-state battery (20) with a solid electrolyte (8) and to the method for producing same. The method includes: protonating a body (11) containing, preferably being entirely made of, a protonatable ceramic material, to form a protonated layer (12, 13) on the body (11); depositing a metal element forming an anode (14) on the protonated layer (13) on a first side (7) of the body (11); assembling a cathode (15) on a second side (9) of the body (11), preferably opposite the first side (7) of the anode (14); and forming dendrites (18) from the metal element in the protonated layer (13) of the body (11).
摘要:
An ink composition for additive manufacture of silica aerogel objects essentially consists of a gellable silica sol containing an admixture of 30 to 70 vol.% of a mesoporous silica powder in a base solvent. The mesoporous silica powder has a particle size range of 0.001 to 1 mm and a tap density of 30 to 200 kg/m3 and comprises at least 10% by weight of silica aerogel powder. The composition has a yield stress in the range of 30 to 3000 Pa and a viscosity of 5 to 150 Pa·s at a shear rate of 50 s−1. Furthermore, the composition has shear thinning properties defined as a reduction in viscosity by a factor between 10 and 103 for an increase in shear rate by a factor of 104 to 105. A method of additive manufacturing of a three-dimensional silica aerogel object by direct ink writing comprises providing such ink composition, forcing the same through a convergent nozzle, thereby forming a jet of the ink composition which is directed in such manner as to form a three-dimensional object by additive manufacturing. After initiating and carrying out gelation of the gellable silica sol constituting said object, a drying step yields the desired three-dimensional silica aerogel object.
摘要:
A new class of liquid polysiloxane materials obtainable from cost-effective commodity precursors allow tailoring a plurality of (multi)—functional properties. The materials are classified in terms of their chemical identity, which comprises Q-type nonorganofunctional, T-type monoorganofunctional and optional D-type diorganofunctional moieties. The T-type organofunctional species within a polymeric MBB can be present in various preferred combinations defined by spatial, stereochemical and compositional factors. The corresponding method of production for the liquid polymeric polysiloxanes involves a scalable, non-hydrolytic acetic anhydride method either in a simple one-step format to create statistically distributed “core-only” hyperbranched poly-alkoxysiloxanes or as a two— or multistep process to create “core-shell” materials.
摘要:
The present invention pertains to a functionalized polymeric liquid polysiloxane material comprising non-organofunctional Q-type siloxane moieties and mono-organofunctional T-type siloxane moieties, as well as optionally tri-organofunctional M-type siloxane moieties and/or di-organofunctional D-type siloxane moieties characterized in that the polysiloxane material has a specified degree of polymerization, comprises a limited low amount of four-membered Q2-type and/or Q3-type siloxane ring species relative to the total Q-type siloxane species, and is functionalized at specific moieties. The present invention further pertains to methods for producing the polymeric liquid polysiloxane material as well as associated uses of the material.
摘要:
A polymeric liquid material formed of molecular building blocks of core-shell type architecture, wherein each building block consists of a hyperbranched polysiloxane core and a functional siloxane shell peripherally attached thereto, the material comprising bridging oxygen moieties (Si—O—Si), hydrolysable alkoxy moieties (Si—O—R) and organofunctional moieties (R′—Si—) and (R1-S1-R2) and less than 0.5 mass percent hydroxy moieties (Si—OH). The core has a degree of polymerization DPcore in the range of 1.3 to 2.7, the shell is formed of R′-substituted siloxane moieties and has a degree of polymerization DPshell in the range of 0.3 to 2.5. At least 75 atomic percent of all Si atoms in the core are bonded exclusively to alkoxy or bridging oxygens, the remainder each being bonded to 3 oxygens and 1 carbon. The total Si to free hydrolysable alkoxy molar ratio in the material is 1:1.25 to 1:2.75, and the material has a viscosity in the range of 10-100,000 cP. A method for preparing the polymeric liquid material relies on first forming the hyper-branched polysiloxane core followed by a build-up of the functional siloxane shell. To do so, a reaction scheme based on adding stoichiometric amounts of acetic anhydride in a water-free environment is exploited.