Abstract:
A fluorescence analysis system may include a sensor head that has a light source configured to emit light into a flow of fluid, a detector configured to detect fluorescent emissions from the flow of fluid, and a temperature sensor. The system may also include a flow chamber that includes a housing defining a cavity into which the sensor head can be inserted. In some examples, the housing is configured such that, when a flow of fluid enters the housing, the flow of fluid divides into at least a major stream passing adjacent the light source and the detector and a minor stream passing adjacent the temperature sensor. Such a flow chamber may direct fluid past different sensors components while inhibiting a build-up of solids particles, the generation of air locks, or other flow issues attendant with continuous or semi-continuous online operation.
Abstract:
A microflow analytical system includes a laminate pump assembly connectable with one or more sources of fluid, one or more pneumatic control pumps, a mixer, and a sensor. The laminate pump assembly is adapted to deliver predetermined volumes of the fluid(s) through a plurality of flow paths which are formed within layers of the assembly. Each flow path can include an inlet valve, a pump valve, and an outlet valve each of which are controllable by the pneumatic control pumps. A series of manifolds can be formed within the layers of the pump assembly to provide for simultaneous activation of selected flow paths. Delivered fluid volumes can be mixed in the mixer which, in some embodiments, may be integral with the laminate pump assembly. The sensor can measure one or more characteristics of the mixed fluids to determine one or more properties of the fluids.
Abstract:
Embodiments provide a handheld fluorometer and method of determining a concentration of a product within a sample. In some cases the handheld fluorometer includes an immersible sensor head that measures a fluorescence of the product and a controller that calculates the concentration of product. In some cases the handheld fluorometer includes a handheld controller module, an immersible sensor head connected to the controller module, a sample cup for containing a water sample, and a fastener that removably fastens the sample cup about the immersible sensor head. In some cases the sensor head is angled with respect to the controller module and the fluorometer provides a substantially stable base. The sample cup can be removed to acquire a sample of water containing the product and then refastened about the sensor head for determining the concentration.
Abstract:
A use composition monitor determines the concentration of peracid and/or peroxide in a use composition using a kinetic assay procedure. A sample mixture containing a sample of the use composition, a diluent and at least one reagent is prepared and analyzed using, for example, an optical detector. A reduced-turbulence optical detector can be used to improve collected response data. A reduced-turbulence optical detector can include a cell body disposed about a length of transparent tubing. The cell body positions one or more emitter/receiver pairs about the transparent tubing. Thus, tube junctions are eliminated and sample flow within the tube is substantially turbulence free.
Abstract:
A use composition monitor determines the concentration of peracid and/or peroxide in a use composition using a kinetic assay procedure. A sample mixture containing a sample of the use composition, a diluent and at least one reagent is prepared and analyzed using, for example, an optical detector. A reduced-turbulence optical detector can be used to improve collected response data. A reduced-turbulence optical detector can include a cell body disposed about a length of transparent tubing. The cell body positions one or more emitter/receiver pairs about the transparent tubing. Thus, tube junctions are eliminated and sample flow within the tube is substantially turbulence free.
Abstract:
An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs to a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser.
Abstract:
A microflow analytical system includes a laminate pump assembly connectable with one or more sources of fluid, one or more pneumatic control pumps, a mixer, and a sensor. The laminate pump assembly is adapted to deliver predetermined volumes of the fluid(s) through a plurality of flow paths which are formed within layers of the assembly. Each flow path can include an inlet valve, a pump valve, and an outlet valve each of which are controllable by the pneumatic control pumps. A series of manifolds can be formed within the layers of the pump assembly to provide for simultaneous activation of selected flow paths. Delivered fluid volumes can be mixed in the mixer which, in some embodiments, may be integral with the laminate pump assembly. The sensor can measure one or more characteristics of the mixed fluids to determine one or more properties of the fluids.
Abstract:
Some embodiments provide methods for calibrating a fluorometer in order to account for one or more optical properties of a water sample affecting fluorescence measurements. In some cases one or more calibration solutions are prepared with sample water from a specific field site. Fluorescence measurements are taken from a water sample and one or more of the calibration solutions, and calibration parameters are determined based on the measurements. In some cases a calibration solution is prepared by spiking sample water to include a higher concentration of a fluorescent tracer and measurements are taken to characterize a calibration slope coefficient. In some cases a calibration solution is prepared by adding an acid and measurements are taken to characterize a background fluorescence in the sample.
Abstract:
An optical detection sensor detects presence or absence of a product within a fluid delivery medium. An emitter directs radiation into the fluid delivery medium. Each of a plurality of detectors detects light within an associated one of a plurality of wavelength ranges transmitted through the fluid delivery medium. The output of each detector is further associated with at least one out-of-product threshold. A controller may further combine detector outputs, such as by multiplication, summation, or other mathematical operation, to produce additional measures of product presence or absence. Each combination output is also associated with at least one out-of-product threshold. The controller compares the output of each detector with the associated out-of-product threshold(s) and compares each combination output with the associated out-of-product threshold(s) to determine presence or absence of product within the fluid delivery medium. The sensor is able to determine presence or absence of a variety of products having different color, transparency or turbidity.
Abstract:
Embodiments of the invention provide devices and methods for measuring fluid volume. Devices according to some embodiments include a chamber, having a pair of gears rotatably mounted therewithin. Fluid flow through the chamber causes rotation of the gears, such that each rotation and/or partial rotation results in a known volume of the fluid passing through the chamber. An optical sensor positioned outside of the chamber, can view the rotating gears through a substantially transparent chamber wall. The optical sensor can view an optical characteristic of one or both of the gears, and based upon this data, fluid volume, flow rate, and/or flow direction can be determined. Devices and methods disclosed herein can provide for improved precision in fluid flow meter measurement. In addition, the devices and methods used herein can be more durable and easier to fabricate than previously known positive displacement flow meters.