Abstract:
Provided herein are methods and processes for synthesis and manufacture of compounds of formula I: or its crystal forms, pharmaceutical acceptable salts, prodrugs, hydrates, or solvates thereof.
Abstract:
Compounds of the following formula are provided for use with MEK: wherein the variables are as defined herein. Also provided are pharmaceutical compositions, kits and articles of manufacture comprising such compounds; methods and intermediates useful for making the compounds; and methods of using said compounds.
Abstract:
A method for communicating a signal to an instrument in a wellbore includes axially accelerating the instrument in a preselected pattern of acceleration. The predetermined pattern corresponds to the signal to be communicated. The axial acceleration of the instrument is detected, and the signal is decoded from the detected axial acceleration. A signal detection system for an instrument in a wellbore includes an accelerometer oriented along a longitudinal axis of the instrument and means for comparing measurements made by the accelerometer to at least one predetermined pattern.
Abstract:
A measuring-wavelength apparatus includes a beam splitter (2), a first optical sensor (6), a second optical sensor (7), a signal-attenuation component (5) and a processing unit (8). A measuring-wavelength method comprising: splitting an incoming light into a first beam and a second beam; transforming the first beam into a first output signal; attenuating the second beam by using a signal-attenuation component; transforming the attenuated second beam into a second output signal; calculating a difference between the first and the second output signals to achieve an optical loss of the light; and in view of the optical loss, looking up a reference table to obtain a wavelength of the light.
Abstract:
Embodiments of a Generation Node-B (gNB) and methods of communication are disclosed herein. The gNB may be configured with logical nodes including a gNB central unit (gNB-CU) and a gNB distributed unit (gNB-DU). The gNB-CU 106 may determine a first precoding matrix and a second precoding matrix for a precoding of one or more data streams for transmission on a plurality of antennas coupled to the gNB-DU. The precoding may be in accordance with a split functionality between the gNB-CU and the gNB-DU that includes: precoding by the gNB-CU with the first precoding matrix, and precoding by the gNB-DU with the second precoding matrix.
Abstract:
Methods of making graphene quantums dots are provided. The methods can produce graphene quantum dots with a monodisperse size distribution. The graphene quantum dots are produced, via one-pot synthesis, from a graphene source and a strong oxidizing mixture at an elevated temperature. The strong oxidizing mixture can contain one or more permanganates and one or more oxidizing acids. Exemplary permanganates include sodium permanganate, potassium permanganate, and calcium permanganate. Exemplary oxidizing acids include nitric acid and sulfuric acid. The graphene quantum dots can have an average particle size of between about 1 nm and 20 nm and a monodisperse size distribution. For example, the size distribution can have a span about 1 or less and/or a coefficient of variance of about 0.5 or less. About 40% or more of the graphene quantum dots can have a diameter within ±5 nm of the average particle size of the graphene quantum dots.
Abstract:
Methods of making graphene quantums dots are provided. The methods can produce graphene quantum dots with a monodisperse size distribution. The graphene quantum dots are produced, via one-pot synthesis, from a graphene source and a strong oxidizing mixture at an elevated temperature. The strong oxidizing mixture can contain one or more permanganates and one or more oxidizing acids. Exemplary permanganates include sodium permanganate, potassium permanganate, and calcium permanganate. Exemplary oxidizing acids include nitric acid and sulfuric acid. The graphene quantum dots can have an average particle size of between about 1 nm and 20 nm and a monodisperse size distribution. For example, the size distribution can have a span about 1 or less and/or a coefficient of variance of about 0.5 or less. About 40% or more of the graphene quantum dots can have a diameter within ±5 nm of the average particle size of the graphene quantum dots.
Abstract:
A resistive random access memory (ReRAM) device can comprise a first metal layer and a first metal-oxide layer on the first metal layer. The first metal-oxide layer comprises the first metal. A second metal layer can comprise a second metal over and in physical contact with the first metal-oxide layer. A first continuous non-conductive barrier layer can be in physical contact with sidewalls of the first metal layer and sidewalls of the first metal-oxide layer. A second metal-oxide layer can be on the second metal layer. The second metal-oxide layer can comprise the second metal layer. A third metal layer can be over and in physical contact with the second metal-oxide layer. The first and second metal-oxide layers, are further characterized as independent storage mediums.
Abstract:
A method is used in sizing volatile memory (VM) cache based on flash-based cache usage. A user selection for a flash-based cache is received. Based on the selection, configuration and sizing factors are provided, by a flash based cache driver, to VM cache size determination logic. Based on the configuration and sizing factors and a sizing formula and rules, a requested VM cache size is produced by the VM cache size determination logic. Based on the requested VM cache size, the VM cache is caused, via VM cache resizing logic, to be resized to the requested VM cache size.