Abstract:
An exemplary power conversion system includes a power conversion device and a control system. The power conversion device converts electrical power from one form to another. The power conversion device includes at least one switching element capable of being turned off to block an electrical current flowing through the at least one switching element. The control system is electrically coupled to the power conversion device for monitoring an electrical current flowing through the at least one switching element and for monitoring at least one parameter in association with the operation of the power conversion system. The control system further generates an over-current threshold value that is variable with respect to at least one monitored parameter.
Abstract:
A compact stacked power module including a positive direct-current-bus-voltage plate having a positive-plate surface and a negative direct-current-bus-voltage plate having a negative-plate surface. The compact stacked power module also includes an alternating-current output plate having opposing first and second output-plate surfaces, a first semiconductor switch contacting the negative-plate surface and the first output-plate surface, and a second semiconductor switch contacting the positive-plate surface and the second output-plate surface. The compact stacked power module further includes a capacitor contacting the negative-plate surface and the positive-plate surface, wherein the capacitor is electrically in parallel with the first and second semiconductor switches.
Abstract:
Certain embodiments of the present invention relates to a method for controlling operation of a parallel converter system. The parallel converter system includes multiple parallel power converters, and each of the parallel power converters is coupleable to a corresponding controller. The method includes: generating, via each of the controllers, a channel reference signal, transmitting each of the generated channel reference signals to a corresponding one of the parallel power converters, and adjusting an output current of each of the parallel converters responsive to the corresponding channel reference signals received, the adjusting controlling a combined output current of the parallel converter system. The channel reference signals of these parallel power converters are generated in response to the participation factors of each of the parallel power converters, and a net converter output reference current.
Abstract:
Systems and methods according to various embodiments direct air flow to rotor coils. This cooling air increases heat transfer from the coils to improve the thermal performance of the rotor.
Abstract:
A stator for an electrical machine (e.g., a motor or generator) is described. The stator includes a stator core consisting of a plurality of axially adjacent generally annular laminations. The stator has axially extending stator teeth between adjacent pairs of which are formed axially extending stator slots for receiving conductors of a stator winding. At least one of the stator teeth includes an axially extending cooling passageway through which a cooling fluid flows in use. The electrical machine can include means for circulating cooling fluid through the cooling passageway(s) to cool the stacked laminations and means for circulating air around the stator along an air cooling circuit where the circulated air is cooled by the stator laminations and there is no need for a separate heat exchanger.
Abstract:
Provided is a series capacitor for controlling a flow of power on a transmission line, and includes a filter circuit, and a thyristor-controlled circuit, wherein an interconnection and operation of the filter circuit and the thyristor-controlled circuit are performed based on a coordination of control thereof, to connect to a series capacitor bank on a transmission line.
Abstract:
Provided is a control method and a control system for controlling the insertion of a plurality of magnets within an electrical machine including a stator and a rotor which rotates in relation to the stator around a rotary axis, the control system has plurality of sensors which continuously sense an air gap between the rotor and the stator, an encoder which continuously detects an angular position of the rotor, and a processor which receives data from the sensors and the encoder and determines in real-time an insertion order for inserting the plurality of magnets in a surface of the rotor and applies a feedback loop while performing the insertion process to adjust the insertion order based on changes in the data received.
Abstract:
Provided is system including a temperature regulator including at least on regulation component in communication with a semiconductor within a converter, and a peak detector in communication with the semiconductor within the converter configured to identify a maximum temperature of each semiconductor. Also provided is a method for regulating temperature change of semiconductor components including measuring a semiconductor temperature, determining a reference temperature when the semiconductor is energized, summing the first semiconductor temperature and the reference temperature to generate a first temperature sum, comparing the first temperature sum to a coolant temperature to generate a first temperature difference. The method also circulates a fluid configured within the system such that the first temperature difference is adjusted.
Abstract:
A switch module includes a collector connection, an emitter connection, and a gate connection. The switch module includes a plurality of parallel connected switching elements, e.g., insulated-gate bipolar transistors, each having a collector electrode electrically connected to the collector connection, an emitter electrode electrically connected to the emitter connection, and a gate electrode electrically connected to the gate connection. A fault protection device is operatively electrically connected between the gate connection and the switching elements and comprises passive electrical components which are selected such that in the event of a fault in at least one of the plurality of switching elements, a gate-emitter voltage is provided to the gate electrodes of non-faulty switching elements in a passive manner.
Abstract:
A wind turbine system is provided. In various embodiments, the system includes a nacelle supported by a tower. At least one rotor blade is rotatably connected with the nacelle to capture wind energy. The at least one rotor blade rotates relative to the nacelle for generating electricity. A generator is coupled to the nacelle for converting the wind energy into electrical energy. A transformer-converter assembly comprises a converter and a transformer such that the converter is integrally connected to the transformer. An electrical and control module is electronically coupled to the generator and the transformer-converter assembly.