Abstract:
There is provided a power converter unit that can include an inverter and a plurality of batteries. The power converter unit can include a battery energy storage system (BESS) and an inverter. The BESS and the inverter can share at least one protection circuit.
Abstract:
Provided is a system for regulating temperature change of semiconductor components within a converter. The system includes a temperature regulator in communication with at least one semiconductor within the converter and a power source, the temperature regulator comprising a controller. Also included is a peak detector in communication with at least one of the semiconductors and configured to identify a maximum temperature of each semiconductor when the semiconductor conducts high current.
Abstract:
Provided is a method for controlling operation of semiconductor gates in a power conversion system including one or more multilevel inverters coupleable to a modulator and a controller. The method includes generating, via the controller, a control signal responsive to an output current power factor associated with the inverters and producing a discontinuous pulse width modulation reference signal based upon the control signal and a target output power, the discontinuous pulse width modulation reference signal being indicative of shifting a phase angle between current and voltage. A gating signal is generated for output from the modulator, as a function of the reference signal and a carrier waveform. The gating signal adjusts the phase angle to prevent switching of the semiconductor gates.
Abstract:
There is provided a power converter unit that can include an inverter and a plurality of batteries. The inverter and the plurality of batteries can be cooled by a common thermal management system. Furthermore, the power converter unit that can include a battery enclosure and the inverter can be co-located with the plurality of batteries inside the battery enclosure.
Abstract:
Provided is a fault isolation apparatus for an inverter configured for coupling to an external power supply. The apparatus includes a plurality of fault detection devices, each configured to (i) complete an electrical path between the inverter and the external power supply and (ii) detect a fault along its respective electrical path. The apparatus also includes a controller configured to instruct the fault detection device to complete its respective electrical path only when the path is devoid of the detected fault.
Abstract:
A compact stacked power module including a positive direct-current-bus-voltage plate having a positive-plate surface and a negative direct-current-bus-voltage plate having a negative-plate surface. The compact stacked power module also includes an alternating-current output plate having opposing first and second output-plate surfaces, a first semiconductor switch contacting the negative-plate surface and the first output-plate surface, and a second semiconductor switch contacting the positive-plate surface and the second output-plate surface. The compact stacked power module further includes a capacitor contacting the negative-plate surface and the positive-plate surface, wherein the capacitor is electrically in parallel with the first and second semiconductor switches.
Abstract:
Provided is system including a temperature regulator including at least on regulation component in communication with a semiconductor within a converter, and a peak detector in communication with the semiconductor within the converter configured to identify a maximum temperature of each semiconductor. Also provided is a method for regulating temperature change of semiconductor components including measuring a semiconductor temperature, determining a reference temperature when the semiconductor is energized, summing the first semiconductor temperature and the reference temperature to generate a first temperature sum, comparing the first temperature sum to a coolant temperature to generate a first temperature difference. The method also circulates a fluid configured within the system such that the first temperature difference is adjusted.
Abstract:
Provided is a method for controlling operation of semiconductor gates in a power conversion system including one or more multilevel inverters coupleable to a modulator and a controller. The method includes generating, via the controller, a control signal responsive to an output current power factor associated with the inverters and producing a discontinuous pulse width modulation reference signal based upon the control signal and a target output power, the discontinuous pulse width modulation reference signal being indicative of shifting a phase angle between current and voltage. A gating signal is generated for output from the modulator, as a function of the reference signal and a carrier waveform. The gating signal adjusts the phase angle to prevent switching of the semiconductor gates.
Abstract:
Provided is system including a temperature regulator including at least on regulation component in communication with a semiconductor within a converter, and a peak detector in communication with the semiconductor within the converter configured to identify a maximum temperature of each semiconductor. Also provided is a method for regulating temperature change of semiconductor components including measuring a semiconductor temperature, determining a reference temperature when the semiconductor is energized, summing the first semiconductor temperature and the reference temperature to generate a first temperature sum, comparing the first temperature sum to a coolant temperature to generate a first temperature difference. The method also circulates a fluid configured within the system such that the first temperature difference is adjusted.
Abstract:
There are provided control systems and methods for charging batteries. For instance, there is provided a system for charging at least two batteries. The system can include a set of hardware associated with the at least two batteries, and the at least two batteries can be connected in series. Each battery from the at least two batteries can be associated with a subset of the set of hardware, and one subset of the set of hardware can be configured to control an associated battery independently from another subset of the set of hardware and its associated battery.