Abstract:
A method of enriching a solution for an adenovirus comprising contacting a solution containing an adenovirus with an anion exchange chromatography resin comprising an acrylate or sulphonamide linker such that the adenovirus binds to the chromatography resin and eluting the adenovirus from the resin with an eluant to obtain an enriched solution of adenovirus.
Abstract:
The invention provides a composition and a method for preserving a non-enveloped viral vector. The composition comprises (a) trehalose, (b) a divalent metal salt, a cationic polymer, or a combination thereof, (c) a multiplicity of non-enveloped viral vector particles, and (d) a liquid carrier. Non-enveloped virus particles are stable in the composition in a liquid form, at elevated temperatures, for a sustained period of time.
Abstract:
The present invention provides a method of identifying a gene product. The method comprises providing a multiplicity of cells comprising a first gene product. Preferably, the first gene product is produced in the multiplicity of cells by expressing a first exogenous nucleic acid sequence encoding the first gene product. A library of second nucleic acid sequences encoding second gene products is then introduced into the multiplicity of cells. The second nucleic acid sequences are expressed in the multiplicity of cells to produce the second gene products such that the first gene product and at least one of the second gene products contact. The method further comprises causing a complex to form between the first gene product, an affinity molecule that binds the first gene product, and at least one of the second gene products, and subsequently retrieving the complex. At least one second gene product of the complex then is identified.
Abstract:
The invention provides a composition comprising particles of an adenoviral vector comprising deficiencies in two or more gene functions required for viral replication, wherein at least one of the deficiencies is of a gene function of the E1 region of the adenoviral genome and (b) a carrier therefor, with relatively high ratios of (i) the number of particles of the adenoviral vectors to the number of particles of E1-revertant replication-deficient adenoviral vectors not comprising one or more of the deficiencies in gene functions of the E1 region of the adenoviral and (ii) the number of particles of the adenoviral vectors to the number of particles of replication-competent adenoviral vectors, as well as a method of preparing such a composition.
Abstract:
The present invention is directed to a method of prophylactically or therapeutically treating an animal for at least one ocular-related disorder, e.g., ocular neovascularization or age-related macular degeneration. The method comprises contacting an ocular cell with an expression vector comprising a nucleic acid sequence encoding an inhibitor of angiogenesis and the same or different nucleic acid sequence encoding a neurotrophic agent. The method also can comprise contacting an ocular cell with different expression vectors, each comprising a nucleic acid sequence encoding an inhibitor of angiogenesis and/or a nucleic acid sequence encoding a neurotrophic agent. In addition, the present invention provides a viral vector comprising a nucleic acid sequence encoding pigment epithelium-derived factor (PEDF) or a therapeutic fragment thereof.
Abstract:
The invention provides cells and methods of using the cells for the propagation of replication-deficient adenoviral vectors. The cells comprise at least one heterologous nucleic acid sequence which upon expression produces at least one non-adenoviral gene product that complements in trans for a deficiency in at least one essential gene function of one or more regions of an adenoviral genome so as to propagate a replication-deficient adenoviral vector comprising an adenoviral genome deficient in the at least one essential gene function of the one or more regions when present in the cell.
Abstract:
The present invention provides methods of detecting and/or characterizing the viral vector particle content of a medium. A medium is provided and contacted with an excitation energy such that, if a viral vector particle is in the medium, an electron associated with the intrinsically fluorogenic portion of the viral vector particle will be raised to an excited energy state. The excited electron is permitted to emit radiation having an emission wavelength which is detected. The viral vector particle content of the medium then can be evaluated by comparing the detected emission wavelength with a standard signal. For example, the number of viral vector particles in a medium can be quantified by comparing the detected wavelength and its corresponding intensity to a standard signal. Similar methods for evaluating the adenoviral vector particle content of a medium and the intrinsically fluorogenic adenoviral structural protein content of a medium are provided.
Abstract:
The present invention provides multiply deficient adenoviral vectors and complementing cell lines. Also provided are recombinants of the multiply deficient adenoviral vectors and a therapeutic method, particularly relating to gene therapy, vaccination, and the like, involving the use of such recombinants.
Abstract:
Provided are methods of modulating the persistence of the expression in a cell of a transgene, such as a transgene in a non-Herpes vector or in at least E4null adenoviral vector, and related systems. One method comprises contacting the cell with a non-Herpes vector comprising and expressing a gene encoding HSV ICP0, whereupon expression of HSV ICP0 the persistence of expression of the transgene is modulated. Further provided is a system for modulating the persistence of expression of a transgene, which system comprises a non-Herpes vector comprising (i) a gene encoding HSV ICP0 and (ii) a transgene, wherein the HSV ICP0 modulates the persistence of expression of the transgene and either the non-Herpes vector comprises the transgene or the system further comprises a vector, in which case the vector comprises the transgene. Another method comprises contacting the cell with an at least E4null adenoviral vector comprising (i) a transgene and (ii) a gene encoding a trans-acting factor, wherein the trans-acting factor modulates the persistence of expression of the transgene and the gene encoding the trans-acting factor is not from the E4 region of an adenovirus. Yet another method comprises contacting a cell simultaneously or sequentially with (i) an at least E4null adenoviral vector comprising a transgene and (ii) a viral vector comprising a gene encoding a trans-acting factor, which is not from the E4 region of an adenovirus and which modulates the persistence of expression of the transgene. Also provided is a system for modulating the persistence of expression of a transgene in an at least E4null adenoviral vector, which system comprises (i) an at least E4null adenoviral vector comprising a transgene and (ii) a gene encoding a trans-acting factor, wherein the gene encoding the trans-acting factor is not from the E4 region of an adenovirus, the trans-acting factor modulates the persistence of expression of the transgene, and either the at least E4null adenoviral vector comprises the gene encoding the trans-acting factor or the system comprises a viral vector, in which case the viral vector comprises the gene encoding the trans-acting factor.
Abstract:
The present invention provides a chimeric protein IX (pIX). The chimeric pIX protein has an adenoviral pIX domain and also a non-native amino acid. Where the non-native amino acid is a ligand that binds to a substrate present on the surface cells, the chimeric pIX can be used to target vectors containing such proteins to desired cell types. Thus, the invention provides vector systems including such chimeric pIX proteins as well as methods of infecting cells using such vector systems.