Abstract:
A method of driving a display panel includes outputting a data voltage of three-dimensional (“3D”) image data included in a left-eye data frame and a right-eye data frame to the display panel along a scanning direction of a first direction during a first period, blocking the data voltage from being provided to the display panel during a second period and outputting a black data voltage to the display panel during a third period that is less than the first period.
Abstract:
A gate drive portion for a display device including multiple pixels having first and second sub-pixels includes a first shift register generating a first output signal in response to a first gate clock signal, a second shift register generating a second output signal in response to a second gate clock signal, a level shifter coupled to the first and second shift registers and amplifying the first and second output signals, and an output buffer coupled to the level shifter and generating first and second gate signals. The first gate signal is generated in synchronization with the first gate clock signal and the second gate signal is generated in synchronization with the second gate clock signal. Accordingly, the charging time of the first and second sub-pixels may be improved by separately driving the odd-numbered and even-numbered sub-pixels and the visibility of the LCD device may also be improved.
Abstract:
A method of compensating data includes extending a number of bits of data and outputting extended data of a first color, compensating a luminance of the extended data of the first color based on a position of the extended data of the first color in a display panel and outputting compensated data of the first color, and outputting compensated data of a second color and compensated data of a third color based on the compensated data of the first color.
Abstract:
A method of driving a display panel includes identifying a dimension of input data, where the input data is one of two-dimensional input data and three-dimensional input data, and generating first distributed data and second distributed data based on the dimension of the input data by at least one of copying the input data and dividing the input data into front data and back data.
Abstract:
A display apparatus includes a display panel, a gate driver, a gray scale compensator, and a date driver. The gate driver sequentially applies gate data to the gate lines. The gray scale compensator compares the primitive gray scale data of the n-th frame with the primitive gray scale data of the (n−1)-th frame to output a compensated gray scale data of a n-th frame, when a primitive gray scale data of a (n−1)-th frame is lower than a gray scale data of a first gray scale and a primitive gray scale data of the n-th frame is higher than a gray scale data of a second gray scale. The date driver converts the compensated gray scale data into a date voltage corresponding to the compensated gray scale data and applies the data voltage to the date line. Therefore, response time of the liquid crystal molecules may be reduced.
Abstract:
A liquid crystal display includes first and second opposing spaced insulating substrates, pixel electrodes formed on the first substrate, a common electrode formed on at least one of the first and second substrates, and a liquid crystal layer interposed there between the first substrate and the second substrate. In this structure, each pixel electrode is divided into a main-pixel electrode and a sub-pixel electrode, to which different signal voltages are individually applied at the same gray scale. Further, a signal voltage to be applied to the sub-pixel electrodes is determined by a gamma value satisfying the following equation: Gamma K=(current gray scale/maximum gray scale)f F(Gray Scale)=α×(maximum gray scale/current gray scale), wherein α is a constant.
Abstract:
A display panel and a method for manufacturing the same are disclosed. The display panel includes: a first substrate, a touch spacer formed on a first substrate, a common electrode formed on the touch spacer, a second substrate opposing the first substrate, a sensing electrode facing the touch spacer on the second substrate and an alignment layer on the sensing electrode or the touch spacer, wherein the alignment layer has a thickness equal to or less than 500 Å.
Abstract:
A data processing apparatus which revises n-bit image data, includes a frame memory which stores therein n−m bit image data of a previous frame; a memory interface which outputs n-bit revision data including upper n−m bits having n−m bit image data of the previous frame outputted by the frame memory and lower m bits having fixed data corresponding to a decimal value 1; a first reviser which revises a color temperature of current frame image data by using n-bit image data of a current frame and the revision data; and a second reviser which revises a gray scale of the current frame image data by using the image data outputted by the first reviser and the revision data.
Abstract:
A driving voltage generating circuit includes: a pulse voltage generating unit generating predetermined pulse voltages; a first voltage generating unit connected to the pulse voltage generating unit and generating a first voltage; a first diode unit and a second diode unit commonly connected to the pulse voltage generating unit and each comprising at least a diode; a second voltage generating unit connected to the first diode unit and generating a second voltage; and a third voltage generating unit connected to the second diode unit and generating a third voltage.
Abstract:
An air conditioning system includes an indoor heat exchanging unit, an outdoor heat exchanging unit, a compressor forming a closed loop together with the indoor and outdoor heat exchanging units to compress refrigerant, and a compressor driver to drive the compressor. The air conditioning system also includes an outdoor temperature sensor to sense outdoor temperature, a high pressure sensor to sense a pressure of the refrigerant discharged from the compressor, a low pressure sensor to sense the pressure of the refrigerant introduced into the compressor, a bypass pipe to connect a refrigerant pipe disposed between the indoor heat and outdoor heat exchanging units with a refrigerant pipe disposed in an influx part of the compressor, a bypass valve to open and close the bypass pipe, and a controller to open the bypass valve when the pressure sensed by the low pressure sensor is a predetermined target low pressure or is below the predetermined target low pressure, and to close the bypass valve when the pressure sensed by the high pressure sensor is over a predetermined target high pressure, under a condition in which the outdoor temperature sensed by the outdoor temperature sensor is a predetermined reference temperature or is below the predetermined reference temperature during a heating operation. Thus, the air conditioning system and a control method thereof, is improved in heating effect while performing a heating operation under a condition in which the outdoor temperature is low.