Abstract:
The invention concerns a method (300) and system (100) for improving voice quality of a vocoder (138, 158). The method includes the steps of monitoring (312) a pitch of a voice signal (400) at a transmitting unit (110); when the pitch of the voice signal reaches a predetermined threshold (840), shifting (326) the pitch of the voice signal to at least a portion of a predetermined range (810); transmitting (338) the pitch-shifted voice signal to a receiving unit (112); and at the receiving unit, reshifting (342) the pitch-shifted voice signal to a level that compensates the step of shifting the pitch of the voice signal at the transmitting unit.
Abstract:
A disposable tool suitable for use in orthopedic alignment that registers points of interest on a first and second bone and transmits location data related to the points of interest to the sensor to assess orthopedic alignment with the points of interest. A display can report and visually display alignment information in real-time.
Abstract:
A navigation system is provided to direct control of a user interface work-flow during a procedure. Such a need can arise in sterile environments were touchless interaction is preferable over physical contact. The system includes a wand and receiver for controlling a pagination and parameter entry of the work-flow, a processor to compare wand movement profiles, a clock for limiting a time window between the comparison, and a controller for activating a user interface control in the workflow when a wand movement profile or gesture is recognized. The comparison can be based on the wand's direction, orientation and movement to and from various locations. Other embodiments are disclosed.
Abstract:
A low-cost and compact electronic device toolset is provided for orthopedic assisted navigation. The toolset comprises wireless sensorized devices that communicate directly with one another. A computer workstation is an optional component for further visualization. The sensorized devices are constructed with low-cost transducers and are self-powered. The toolset is disposable and incurs less hospital maintenance and overhead. As one example, the toolset reports anatomical alignment during a surgical workflow procedure. Other embodiments are disclosed.
Abstract:
A touchless sensor device (110) for touchless signing and recognition is provided. The sensor device can include a recognition engine (114) for recognizing at least one finger sign (140), and a controller (120) for composing a text from the recognized at least one finger sign and providing predictive texting. A recognized pattern can be an alphanumeric character or a finger gesture. The controller can generate a trace (145) from the finger sign. The trace can include spatio-temporal information (153) that is characteristic to a touchless writing style. The controller can provide text messaging services, email composition services, biometric identification services, phone dialing, and navigation entry services through touchless finger signing.
Abstract:
A system and method is provided for resolving a pivot point via touchless interaction. It applies to situations where one end of a rigid object is inaccessible but remains stationary at a pivot point, while the other end is free to move and is accessible to an input pointing device. As an example, the rigid object can be a leg bone where the proximal end is at the hip joint and the distal end is at the knee. The system comprises a wand and a receiver that are spatially configurable to touchlessly locate the pivot point without contact. The receiver tracks a relative displacement of the wand and geometrically resolves the location of the pivot point by a spherical mapping. The system can use a combination of ultrasonic sensing and/or accelerometer measurements. Other embodiments are disclosed.
Abstract:
At least one exemplary embodiment is directed to a method and device for voice operated control. The method can include measuring a first sound received from a first microphone, measuring a second sound received from a second microphone, detecting a spoken voice based on an analysis of measurements taken at the first and second microphone, mixing the first sound and the second sound to produce a mixed signal, and controlling the production of the mixed signal based on one or more aspects of the spoken voice.
Abstract:
A method for determining orthopedic alignment is provided. The method includes monitoring a first and second sequence of signals transmitted from the first device to a second device, estimating a location of the first device from sensory measurements of the signals at respective sensors on the second device, calculating a set of phase differences, weighting a difference of an expected location and estimated location of the first device with the set of phase differences to produce a relative displacement, and reporting a position of an orthopedic instrument coupled to the first device based on the relative displacement.
Abstract:
A load balance and alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.
Abstract:
A configurable check and balance system is provided to assess and report orthopedic measurements, including bone cut angles, trial inserts, extension gaps and prosthetic fit. The system can be configured for cut-check, trial-check, alignment and balance, dynamic distraction, and prosthetic trial fit. The measurements can be provided with respect to an anatomical coordinate system defined according to a positioning of a sensorized mechanical plate with respect to one or more referenced anatomical landmarks. In one example, the cut-check provides measurement of varus/valgus angle and anterior/posterior slope for distal femur cuts and proximal tibia cuts. The cut-check permits a surgeon to check bone cuts made by mechanical jigs, guides or patient specific implants (PSI). It also provides distance measurements. Other embodiments are also disclosed.