Abstract:
The present invention is directed to certain oxazole derivatives which are useful as inhibitors of Fatty Acid Amide Hydrolase (FAAH). The invention is also concerned with pharmaceutical formulations comprising these compounds as active ingredients and the use of the compounds and their formulations in the treatment of certain disorders, including osteoarthritis, rheumatoid arthritis, diabetic neuropathy, postherpetic neuralgia, skeletomuscular pain, and fibromyalgia, as well as acute pain, migraine, sleep disorder, Alzheimer Disease, and Parkinson's Disease.
Abstract:
A thin film transistor has a semiconducting layer comprising a semiconductor and a mixture enriched in metallic carbon nanotubes. The semiconducting layer has improved charge carrier mobility.
Abstract:
A thin-film transistor uses a semiconducting layer comprising a semiconducting material of (A): where X, Ar, Ar′, R1, R2, R3, R4, R5, a, b, m, and n are as defined herein. The transistor has improved performance.
Abstract:
A stacked card connector (100) has a terminal module with a set of first terminals (2). The first terminals (2) have cantilever beams (22) and the cantilever beams (22) substantially spread in a plane, the first terminals vertically extend a leg (21) from the plane to a bottom face of stacked card connector; the first set of terminals (2) have a front row of terminals and a rear row of terminals, the first terminals (2) have contact portions (231) and transverse beams (222) connecting the contact portions (231) and the cantilever beams (22), the cantilever beams (22) of the front row of terminals branching vertically to the cantilever beam form a cross bar (221), the transverse beams (222) of the rear row of terminals extend lengthwise poles intersecting the cross bar (221) at nodes (223). The nodes (223) keep the first terminals (2) in a plane before injecting molding, and are cut off through the cutouts (113) to form a hole (224), the nodes (223) can make the first terminals have good flatness.
Abstract:
A locking device is used for securing a heat sink to an electronic device mounted on a first face of a printed circuit board which defines a first hole. The heat sink defines a second hole therein. The locking device has a fastener including a head portion located aside the heat sink, a foot portion located aside a second face of the printed circuit board, and a body portion extending through the holes of the heat sink and the printed circuit board and interconnecting the head portion and the foot portion. The foot portion includes a buckling part abutting against the second face of the printed circuit board, and a positioning part extending towards the head portion to a position above the buckling part. When the buckling part abuts against the printed circuit board, the positioning part has a portion thereof entering into the first hole.
Abstract:
Structures and methods of fabricating isolation regions for a semiconductor device. An example method comprises the following. We form one or more buried doped regions in a substrate. We form a stressor layer over the substrate. We form a strained layer over the stressor layer. We form STI trenches down through the strained layer and the stressor layer to as least partially expose the buried doped regions. We etch the buried doped regions to form at least a buried cavity in communication with the STI trenches. In the first and second embodiments, we fill only the STI trenches with insulation material to form isolation regions and form voids in the cavities. In the third and fourth embodiments, we fill both the STI trenches and the cavities with insulation material.
Abstract:
A method for controlling power supply in a computer system includes receiving a control command, and providing power through an interface of the computer system when the computer system is operating in a low power consumption mode.
Abstract:
A polymer of the following formula wherein Ar is aryl or heteroaryl; X represents CH2, sulfur, oxygen, selenium, NR′, or SiR″2 wherein R′ and R″ are each a suitable hydrocarbon; m represents the number of X substituents; and n represents the number of the repeating units.
Abstract:
A control circuit provides a control signal for a constant on-time PWM switching converter to produce an output voltage, such that the converter operates with a constant on-time at a first state and operates with a variable on-time at a second state, so as to decrease the switching frequency and thereby the switching loss, to increase the efficiency of the converter, to improve the transient response, and to reduce the recovery time of the output voltage.
Abstract:
An electronic device, such as a thin film transistor containing a semiconductor of Formula/Structure wherein R, R′ and R″ are, for example, independently hydrogen, a suitable hydrocarbon, a suitable hetero-containing group, a halogen, or mixtures thereof; and n represents the number of repeating units.