Abstract:
Phase detection between service nodes in a as “PRIME” (“PoweRline Intelligent Metering Evolution”) communications network, in which the service nodes are connected to one phase of a three-phase power distribution network. A service node joining a sub-network receives packet data units from other service nodes in the sub-network, including those that can potentially serve as a switch node to which the joining service node can register. The joining service node measures an elapsed time between a zero crossing of the AC power waveform at its phase and the start of a frame in the received packet data units. This elapsed time is compared with a similar zero crossing gap communicated by other service nodes in the packet data units, to identify the relative phases to which the two service nodes are connected.
Abstract:
A method of Multi-Tone Mask (MTM) mode communications in a PLC network including a first router associated with a plurality of nodes. A super-frame spanning a time period is received within the subnetwork. The super-frame includes beacon frames in beacon slots within a beacon period, with each beacon frame in one of N TMs, a contention access period (CAP) including a plurality of CAP slots provided for each TM, and a poll-based contention-free period (CFP). The beacon frames provide time assignments within the super-frame including time assignments for the CAP slots and for the CFP, and TM assignments for the TMs in the CAP slots. One of nodes, another router in the subnetwork, or a router in another subnetwork transmits a broadcast frame on the PLC channel. The first router forwards the broadcast frame on the PLC channel in each of the N TMs within the time period.
Abstract:
A wireless device includes a peer-to-peer group owner processor that handles peer-to-peer transactions, a memory coupled to the peer-to-peer group owner processor, and a power state controller. The power state controller determines an access category of a communication received from a peer-to-peer client and determines a quality of service constraint for the access category. The power state controller also determines a power-save mechanism for the wireless device based on the quality of service constraint and implements the determined power-save mechanism.
Abstract:
A method of powerline communications between a plurality of nodes on a powerline communications (PLC) channel including a first node and a second node. At least one communication quality measure is determined for the PLC channel. Based on the communication quality measure, a preamble of a data frame is dynamically switched between a reference preamble having a reference symbol length including a reference number of syncP symbols and a reference number of syncM symbols and at least a first extended preamble having an extended symbol length that is greater than (>) the reference symbol length. The data frame is then transmitted on the PLC channel.
Abstract:
A method of communicating in a network having a plurality of nodes including a base node (BN), and a plurality of service nodes (SNs) having at least one switch node (SW) and at least one terminal node (TN). The method includes at least one of a) a first SN from the plurality of SNs receiving (i) a data/ALV_B/ACK frame from the BN or (ii) a beacon from the BN or SW, and restarting a first KA timer at the first SN upon (i) or (ii), and b) restarting an ALV_S timer at the BN for the first SN upon receiving a data/ALV_S/ACK frame from the first SN.
Abstract:
Systems and methods for designing, using, and/or implementing non-beacon network communications using frequency subbands are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include transmitting a beacon request message over a given one of a plurality of frequency subbands, receiving a plurality of beacons in response to having transmitted the beacon request message, each of the plurality of beacons received over a respective one of the plurality of frequency subbands, and calculating a downlink quality report based, at least in part, upon the received beacons. The method may also include transmitting the downlink quality report over each of the plurality of frequency subbands and receiving a subband allocation command in response to having transmitted the downlink quality report, the subband allocation command indicating a downlink subband assignment and an uplink subband assignment.
Abstract:
Embodiments provide systems and methods to optimize the time when to receive transmissions from dissimilar wireless networks, and hence, improve the overall network throughput and avoid access point transmission rate fall-back mechanism having an avalanche effect during coexistence of dissimilar wireless network technologies. A receiver comprises at least two dissimilar network technology subsystems and is able to receive transmissions from dissimilar wireless network technology subsystems during a predetermined reception window.
Abstract:
Embodiments of the invention provide a method to efficiently enable Network MIMO for use in the downlink direction. An association is established between a primary NodeB in a first cell and a secondary NodeB in an adjacent second cell. A set of downlink transmission resources is reserved for use by both the primary NodeB and the secondary NodeB. A transport block is transmitted from the secondary NodeB simultaneously with the primary NodeB to a user equipment (UE) near the edge of the first cell in response to a schedule provided by the primary NodeB. A time instance of the reserved transmission resources is released by the secondary NodeB when no simultaneous transmission of a transport block is scheduled within a minimum time.
Abstract:
Network circuitry and a method of operating the same in establishing and deleting a service flow in a wireless network. A network station receives a request, from an initiating network station, to establish a service flow. The network station receiving the request issues a response to that request, following which it expects an acknowledgement from the initiator. Upon absence of such an acknowledgement, the receiving station transmits a message, to the initiator, to explicitly delete the service flow. This ensures that the initiator is not placed into an ambiguous state of transmitting payload traffic to a receiver that is ignoring or not receiving that traffic, in the case in which the initiator is also the transmitter of the payload traffic. This circuitry and method also ensures that the initiator is not in an ambiguous state, in the case in which it is the intended receiver of the payload traffic.
Abstract:
Apparatus and method for improving throughput in a wireless device accessing coexisting networks. In one embodiment, a wireless device includes first and second wireless transceivers, a power state controller, and an access controller. The first wireless transceiver is configured to access a first wireless network. The second wireless transceiver is configured to access a second wireless network. The power state controller is configured to switch the first wireless transceiver between an active state and a sleep state. The power consumed by the first wireless transceiver while in the sleep state is reduced relative to the active state. The access controller is configured to alternately allocate a wireless medium to the first wireless transceiver and the second wireless transceiver. The power state controller and the medium access controller are configured to coordinate power state switching of the first wireless transceiver and wireless medium access by the second wireless transceiver.