Self-assembled microcapsules with stimuli-responsive organic ligands

    公开(公告)号:US12246096B2

    公开(公告)日:2025-03-11

    申请号:US17296187

    申请日:2019-11-20

    Abstract: Self-assembled organic ligand functionalized microcapsules encapsulating one or more substrates, which release the substrates upon activation with a power source, are provided. Compositions that include these microcapsules, as well as methods of making the microcapsules and releasing the encapsulated substrates are also provided. The structures, compositions and methods find use in a variety of applications, such as drug and cell encapsulation technologies, for direct delivery, control, and activation of medicines and therapies to specific tissues in a living host.

    Expert-level detection of acute intracranial hemorrhage on head CT scans

    公开(公告)号:US12243297B2

    公开(公告)日:2025-03-04

    申请号:US17597714

    申请日:2020-07-20

    Abstract: A computer-implemented method can include a training phase and a hemorrhage detection phase. The training phase can include: receiving a first plurality of frames from at least one original computed tomography (CT) scan of a target subject, wherein each frame may or may not include a visual indication of a hemorrhage, and further wherein each frame including a visual indication of a hemorrhage has at least one label associated therewith; and using a fully convolutional neural network (FCN) to train a model by determining, for each of the first plurality of frames, whether at least one sub-portion of the frame includes a visual indication of a hemorrhage and classifying the sub-portion of the frame based on the determining. The hemorrhage detection phase can include: receiving a second plurality of frames from a CT scan of a target subject, wherein each frame may or may not include a visual indication of a hemorrhage; and determining, for each of the second plurality of frames, whether a plurality of sub-portions of the frame includes a visual indication of a hemorrhage based at least in part on the trained model.

    Systems and methods for tracking occluded objects

    公开(公告)号:US12236688B2

    公开(公告)日:2025-02-25

    申请号:US17738678

    申请日:2022-05-06

    Abstract: A method for tracking occluded objects includes encoding locations of a plurality of objects in an environment, determining a target object, receiving a first end point corresponding to a position of the target object before occlusion behind an occlusion object, distributing a hypothesis between both sides of the occlusion object during occlusion from a subsequent frame of the sequence of frames, receiving a second end point corresponding to a position of the target object after emerging from occlusion from another subsequent frame of the sequence of frames, and determining a trajectory of the target object when occluded by the occlusion object by performing inferences using a spatio-temporal probabilistic graph based on the current frame and the subsequent frames of the sequence of frames. The trajectory of the target object when occluded is used as a learning model for future target objects that are occluded by the occlusion object.

    Particle-drop structures and methods for making and using the same

    公开(公告)号:US12233407B2

    公开(公告)日:2025-02-25

    申请号:US18161322

    申请日:2023-01-30

    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.

Patent Agency Ranking