Abstract:
A space-time multiuser detector simultaneously reduces multiple access interference (MAI) and multipath channel distortion (MCD) that are disadvantages of mobile communication systems. The space-time multiuser detector includes a plurality of receiving antennas; a channel estimator which estimates signals received via the receiving antennas; a space-time diversity decoder which performs space-time decoding with respect to the signals provided from the channel estimator and performs diversity combination; a signal aligner which aligns the signals provided from the space-time diversity decoder; and a successive interference cancellation detector which generates an interference signal from the signals that are provided from the signal aligner one by one in sequence, and removes the interference signal from the received original signals.
Abstract:
A planar antenna manufactured by patterning a substrate consisting of a dielectric layer, and first and second conductive layers applied, respectively, to both opposite surfaces of the dielectric layer. A first slot is formed in the first conductive layer for radiating electric waves. A second slot is formed in the first conductive layer for intercepting a particular frequency of the electric waves radiated by the first slot. A power supply portion is formed with the first conductive layer for supplying electric current to the first slot. A radiating element formed with the second conductive layer, which is excited by the electric waves radiated by the first slot, and radiates the electric waves.
Abstract:
A floating gate electrode configuration and process reduces a space critical dimension between adjacent floating gate electrodes while reducing the consumption of a device isolation layer during etching of a dielectric layer overlying the floating gate electrode. The end portions of the floating gate electrode, which is formed separated on a device isolation region, have a step or rounded pattern. In order to realize such a pattern, after a first partial etch of a floating gate electrode material, polymer spacers or silicon nitride spacers are formed along the etched sidewalls. Then, using those spacers as an etching mask, a second etch is performed on the floating gate electrode material to separate the same. Furthermore, after forming polysilicon on the partially etched floating gate electrode material, blanket etching is performed on the polysilicon to form a floating gate electrode having a round pattern of end portions.
Abstract:
Disclosed are a mobile robot with a single camera capable of performing a cleaning process with respect to surroundings, and capable of more precisely making a 3D map of the surroundings including a plurality of feature points, and a method for recognizing 3D surroundings of the same. According to the method, images of the surroundings are captured, and a preset number of particles with respect to feature points of a first image are projected to a second image based on matching information of feature points extracted from the two images sequentially captured, thereby extracting 3D information of the surroundings.
Abstract:
A method of forming a multi-floor step pattern structure includes forming a stacked structure having alternating insulating interlayers and sacrificial layers on a substrate. A first photoresist pattern is formed on the stacked structure. A first preliminary step pattern structure is formed by etching portions of the stacked structure using the first photoresist pattern as an etching mask. A passivation layer pattern is formed on upper surfaces of the first photoresist pattern and the first preliminary step pattern structure. A second photoresist pattern is formed by removing a side wall portion of the first photoresist pattern exposed by the passivation layer pattern. A second preliminary step pattern structure is formed by etching exposed insulating interlayers and underlying sacrificial layers using the second photoresist pattern as an etching mask. The above steps may be repeated on the second preliminary step pattern structure to form the multi-floor step pattern structure.
Abstract:
According to example embodiments of inventive concepts, a method includes forming cell patterns and insulating interlayers between the cell patterns on the substrate. An upper insulating interlayer including initial and preliminary contact holes is formed on an uppermost cell pattern. A first reflection limiting layer pattern and a first photoresist layer pattern are formed for exposing a first preliminary contact hole while covering inlet portion of the initial and preliminary contact holes. A first etching process is performed on layers under the first preliminary contact hole to expose the cell pattern at a lower position than a bottom of the first preliminary contact hole. A partial removing process of sidewall portions of the first reflection limiting layer pattern and the first photoresist layer pattern and an etching process on exposed layers through bottom portions of the preliminary contact holes are repeated for forming contact holes having different depths.
Abstract:
An automatic brightness adjusting method and apparatus for image signal processor (ISP) is provided. The image processing apparatus may include a histogram generating unit, a cumulative distribution function calculator, and a histogram equalization (HE) unit. The histogram generating unit may generate a histogram of brightness values of pixels in an input image. The cumulative distribution function calculator may generate a cumulative distribution function and an inverse cumulative distribution function, based on the generated histogram. The HE unit may generate a conversion function based on the cumulative distribution function and the inverse cumulative distribution function, and may apply HE to the input image based on the conversion function so as to generate an output image.
Abstract:
A method of forming a fine pattern and a method of manufacturing a semiconductor device. The method of forming a fine pattern includes: forming a hard mask layer on a to-be-etched layer; forming on the hard mask layer a first mask pattern including a plurality of elongated openings that are arranged at predetermined intervals in a first direction and a second direction different from the first direction and are offset from each other in adjacent columns in the second direction; forming on the hard mask layer a second mask pattern including at least two linear openings that each pass through the elongated openings in the adjacent columns and extend in the first direction; forming a hard mask pattern by etching the hard mask layer by using the second mask pattern as an etch mask; and etching the to-be-etched layer by using the hard mask pattern.
Abstract:
A transmitter and a signal amplifier are provided. The signal amplifier includes a digital-to-analog converter converting an input digital signal into an analog signal, a local oscillator signal generator outputting in-phase and quadrature-phase oscillator signals, a first mixer mixing the analog signal with the in-phase local oscillator signal to output an in-phase high frequency signal, a second mixer mixing the analog signal with the quadrature-phase local oscillator signal to output a quadrature-phase high frequency signal, a main amplifier amplifying the in-phase high frequency signal output from the first mixer, and an auxiliary amplifier amplifying the quadrature-phase high frequency signal output from the second mixer.
Abstract:
Disclosed are a mobile robot with a single camera capable of performing a cleaning process with respect to surroundings, and capable of more precisely making a 3D map of the surroundings including a plurality of feature points, and a method for recognizing 3D surroundings of the same. According to the method, images of the surroundings are captured, and a preset number of particles with respect to feature points of a first image are projected to a second image based on matching information of feature points extracted from the two images sequentially captured, thereby extracting 3D information of the surroundings.