Abstract:
An air-fuel ratio control system for an internal combustion engine having first and second catalytic converters arranged in the exhaust passage comprises first to third exhaust gas component concentration sensors arranged in the exhaust passage, the first one being arranged upstream of the first catalytic converter, the second one at a location intermediate between the first and second catalytic converters, and the third one downstream of the second catalytic converter. An ECU carries out feedback control of the air-fuel ratio of a mixture supplied to the engine to a desired air-fuel ratio in response to an output from the first exhaust gas component concentration sensor. A first feedback control parameter for use in the feedback control is calculated, based on an output from the second exhaust gas component concentration sensor. A second feedback control parameter for use in the calculation of the first feedback control parameter is calculated, based on an output from the third exhaust gas component concentration sensor.
Abstract:
A system for controlling an air-fuel ratio of an air-fuel mixture supplied to each cylinder of a multicylinder internal combustion engine. A first feedback loop is provided for converging a first air-fuel ratio at a location at least either at or downstream of a confluence point of an exhaust system to a first desired air-fuel ratio by multiplying a first feedback gain to a first error therebetween. And a second feedback loop is provided in the first loop for converging a second current air-fuel ratio at each cylinder to a second desired air-fuel ratio by multiplying a second feedback gain to a second error. The first feedback loop and said second feedback loop are connected in series such that the second loop located inside the first loop. With the arrangement. the second loop operates the second air-fuel ratio converges to converge the second air-fuel ratio to the first air-fuel ratio which in turn tends to converge on the first desired air-fuel ratio such that the air-fuel ratios of all cylinders can therefore be converged on the desired air-fuel ratio.
Abstract:
A system for controlling an air/fuel ratio of a four-cylinder internal combustion engine. In the system, an actual air/fuel ratio, at least at upstream or downstream of a catalytic converter installed at an exhaust system of the engine, is intentionally oscillated at least either in its amplitude or cycle. A characteristic of a desired air/fuel ratio as a periodic function is established with respect to time such that the desired air/fuel ratio varies at least either at a predetermined amplitude or cycle within a predetermined period. The characteristic is sampled by a time interval determined on the basis of a time interval between TDC crank angle positions of the engine. Each cylinder's desired air/fuel ratio is then determined from the sampled data, and a fuel injection amount for each cylinder is determined from the respective cylinder's desired air/fuel ratios. Fuel is then supplied to each cylinder in response to the determined fuel injection amount. The actual air/fuel ratio at each cylinder is detected or estimated and feedback controlled to the desired air/fuel ratio.
Abstract:
An in-cylinder pressure detecting device of a direct injection type internal combustion engine is provided in which a ring-shaped pressure detection element (34) surrounding a fuel injection hole (33b) is provided in the vicinity of an extremity of an injector (20) that injects fuel into a combustion chamber. Since the pressure detection element is provided on the injector, not only is it unnecessary to change the shape or structure of the cylinder head or the combustion chamber in order to provide the pressure detection element, but it is also possible to cool the pressure detection element (34) by fuel passing through the inside of the injector to thus enhance the precision of pressure detection and the durability. Further, since the ring-shaped pressure detection element (34) surrounds the periphery of the fuel injection hole (33b), it is possible to maximize the dimensions of the pressure detection element (34) to thus further enhance the precision of pressure detection while avoiding interference between the pressure detection element (34) and fuel injected via the fuel injection hole (33b).
Abstract:
An ignition timing control system for an internal combustion engine, which is capable of ensuring both stability of control in a steady operating condition of the engine, and an excellent follow-up property of a controlled variable to a target value in a transient operating condition of the engine, even when the controlled variable contains a lot of high-frequency noise components. In the ignition timing control system, a maximum pressure angle-calculating section calculates a maximum pressure angle based on an in-cylinder pressure and a crank angle position. A target angle-calculating section calculates a target angle. A maximum pressure angle controller calculates a maximum pressure angle correction term with a control algorithm to which is applied a sliding mode control algorithm, using a value obtained by performing ε-filtering on a switching function, such that the maximum pressure angle converges to the target angle. The ignition timing is calculated by adding corrected ignition timing to the value.
Abstract:
An in-cylinder pressure detection device for an internal combustion engine, which is capable of calculating a hysteresis amount properly to thereby detect in-cylinder pressure with high accuracy. The in-cylinder pressure detection device comprises an in-cylinder pressure sensor that detects in-cylinder pressure as a detected in-cylinder pressure. The in-cylinder pressure detection device estimates an in-cylinder pressure generated when combustion is not performed in the cylinder, as a motoring pressure, calculates a hysteresis amount indicative of a difference between the detected in-cylinder pressure and an actual in-cylinder pressure, based on the detected in-cylinder pressure and the motoring pressure obtained during the exhaust stroke of the engine, and corrects the detected in-cylinder pressure based on the calculated hysteresis amount.
Abstract:
A control for determining a firing timing of an engine is provided. An in-cylinder pressure is detected at a predetermined time interval. An in-cylinder pressure for every predetermined crank angle is calculated based on the detected in-cylinder pressure. A motoring pressure in a case where combustion is not performed in the engine is estimated. It is detected that a pressure difference between the calculated in-cylinder pressure and the motoring pressure has exceeded a determination value. A time point is identified, as a firing timing, at which the pressure difference has exceeded a determination value with a finer resolution than the resolution of the predetermined crank angle interval through an interpolation calculation. The interpolation calculation uses a first crank angle when it is detected that the pressure difference has exceeded the determination value, the pressure difference corresponding to the first crank angle, a second crank angle previous to the first crank angle by the predetermined crank angle and a pressure difference corresponding to the second crank angle.
Abstract:
An in-cylinder pressure detection device for an internal combustion engine, which is capable of detecting an in-cylinder pressure accurately without being adversely affected by changes in the atmospheric pressure even when the atmospheric pressure changes. An in-cylinder pressure sensor detects pressure within a cylinder as a detected in-cylinder pressure. An ECU estimates pressure generated in the cylinder during a non-combustion period as a motoring pressure. An atmospheric pressure sensor detects an atmospheric pressure (PA). The ECU corrects the motoring pressure according to the atmospheric pressure and identifies correction parameters such that the difference between the detected in-cylinder pressure detected during a compression stroke of the engine and the corrected motoring pressure becomes minimum, and corrects the detected in-cylinder pressure by the identified correction parameters, to thereby calculate an in-cylinder pressure.
Abstract:
An ignition timing control apparatus and method for an internal combustion engine, and an engine control unit are provided for more rapidly and effectively restraining knocking as the entire internal combustion engine, and extending the lifetime of the internal combustion engine. The ignition timing control apparatus comprising an ECU. The ECU determines a basic ignition timing on a cylinder-by-cylinder basis, calculates a knock intensity on a cylinder-by-cylinder bases based on a detected signal of a cylinder inner pressure sensor, and updates a correction coefficient learning value for a corresponding cylinder when the knock intensity is larger than a predetermined first determination value and is smaller than a predetermined second determination value larger than the predetermined first determination value, and updates the knock intensities for all the cylinders when the one knock intensity parameter is equal to or larger than the predetermined second determination value. Then, the ECU calculates a knock correction term on a cylinder-by-cylinder basis in accordance with the correction coefficient learning value, and corrects the basic ignition timing with the knock correction term, thereby determining an ignition timing on a cylinder-by-cylinder basis.
Abstract:
An in-cylinder pressure detection device for an internal combustion engine, which is capable of calculating a hysteresis amount properly to thereby detect in-cylinder pressure with high accuracy. The in-cylinder pressure detection device comprises an in-cylinder pressure sensor that detects in-cylinder pressure as a detected in-cylinder pressure. The in-cylinder pressure detection device estimates an in-cylinder pressure generated when combustion is not performed in the cylinder, as a motoring pressure, calculates a hysteresis amount indicative of a difference between the detected in-cylinder pressure and an actual in-cylinder pressure, based on the detected in-cylinder pressure and the motoring pressure obtained during the exhaust stroke of the engine, and corrects the detected in-cylinder pressure based on the calculated hysteresis amount.