Abstract:
A testing microchip includes a specimen storage section; a reagent storage section; a reaction section; a testing section for a test of a reaction product obtained from the reaction; a liquid feed control section; and a gas bubble trapping structure. The sections are connected continuously by a series of flow channels. The liquid feed control section stops passing of liquid until a liquid feeding pressure reaches a predetermined pressure, and passes the liquid when the liquid feeding pressure becomes higher than the predetermined pressure; and the gas bubble trapping structure traps a gas bubble in the liquid that flows in the flow channel so that the gas bubble does not flow to the downstream side and only the liquid passes to the downstream side. A testing apparatus that performs testing in the testing section of the testing microchip, wherein the testing microchip is attachably and detachably mounted to the apparatus.
Abstract:
Disclosed herein is a micro fluid transferring system that comprises a micropump having a chamber, a first fluid transferring portion connected to the chamber, and a second fluid transferring portion connected to the chamber. This system is characterized in that at least one of the first and second fluid transferring portions comprises a pressure absorbing section for absorbing or alleviating a liquid vibrational pressure therein.
Abstract:
Disclosed herewith is a microchip having a micromixer therein. The mixromixer employs a mixing or extracting structure having (1) a first flow pass provided at a first level of the microchip; (2) a second flow pass provided at a second level of the microchip, which is different from the first level; (3) a third flow pass having a plurality of sub flow passes separately layered at the first level and each having a first end and second end thereof, each sub flow pass being connected to one of the first and second flow passes at the first end thereof; and (4) a fourth flow pass, provided at the first level, connected to the second ends of the sub flow passes so that, at least connecting portions between the fourth flow pass and the sub flow passes of the third flow pass, an extending direction of the fourth flow pass is substantially identical to those of the sub flow passes. By allowing the first liquid to flow from the first flow pass to the fourth flow pass through the third flow pass while the second liquid to flow from the second flow pass to the fourth flow pass through the third flow pass, the first and second liquids are mixed at the fourth flow pass.
Abstract:
Disclosed herein is a microchip provided with a specimen flow pass, a reagent flow pass, a confluence flow pass all of which are fine flow passes. The specimen flow pass allows specimen to flow toward one end thereof. The reagent flow pass is connected to that end of the specimen flow pass and allows at least one reagent to flow for reaction with the specimen. The confluence flow pass extends from that end of the specimen flow pass and allows the confluent specimen and reagent to flow. A sensing portion is assigned near or at the confluence flow pass, and the reaction of the specimen and the reagent is capable of being detected or observed there. Further to this, the microchip comprises a force applying means for reciprocally moving the specimen and the reagent at the sensing portion. Since the reaction of the specimen and the reagent is occurred while they are reciprocally moved within the sensing portion, a length of confluence flow pass required for the reaction can be shortened, and therefore, a size of the microchip can be made compact.