Abstract:
There are provided a micro mixer capable of efficiently mixing at least two types of liquids in a simple structure and a microfluidic chip provided with the micro mixer. In order to achieve the object, the micro mixer includes a minute passage through which first and second liquids are caused to flow respectively, and a mixing vessel in which a liquid injecting port caused to communicate with the minute passage is provided in a bottom part, and the liquid injecting port is provided in a shifted position from a center of the bottom part in the bottom part. Moreover, the liquid injecting port may be provided in a shifted position from a center line of the mixing vessel.
Abstract:
In the case of passing a reagent in a reaction channel in a microchip, which carries a reactant capable of reacting with the reagent on the wall thereof, and bringing the reactant into contact with the reagent so as to carry out a reaction, the reagent is efficiently passed to the reactant to thereby promote the progress of the reaction. In carrying out the reaction as described above, the reagent (30a) is passed in such a manner that the periphery of the gas/liquid interface at the front end of the reagent moves forward and backward along the wall face of the reaction channel (10). After the completion of the reaction between the reagent (30a) and the reactant, another reagent (30b), which is to be reacted with the reactant capable of reacting with the reagent that is carried on the reaction channel, is passed into the reaction channel (10) while providing a gas in the front edge side thereof. In carrying out the reaction, the reagent (30b) is passed in such manner that the periphery of the gas/liquid interface at the front end of the reagent moves forward and backward along the wall face of the reaction channel (10).
Abstract:
A micro-reactor for analyzing a sample, comprises (1) a plate-shaped chip; (2) a plurality of regent storage sections each having a chamber to store respective agents; (3) a regent mixing section to mix plural regents fed from the plurality of regent storage sections so as to produce a mixed reagent; (4) a sample receiving section having an injection port through which a sample is injected from outside; and (5) a reacting section to mix and react the mixed regent fed from the reagent mixing section and the sample fed from the sample receiving section. The plurality of regent storage sections, the regent mixing section, the sample receiving section and the reacting section are incorporated in the chip and are connected through flow paths, and the regent mixing section includes a feed-out preventing mechanism to prevent an initially-mixed regent from being fed out to the reacting section.
Abstract:
A microreactor capable of reaction between a sample and a mixed reagent containing a mixture of multiple reagents, which microreactor avoids the interposition of air between driving solution and reagents and realizes high-precision controlling of the timing of mixing of reagents and other liquids, the mixing ratio of liquids, the pressure for liquid feeding, etc. Further, there is provided a method of liquid feeding making use of the same. Accordingly, a flow path branched at the position of an inlet from a flow path through which an opening communicating with an external pump communicates with the inlet is provided with an air evacuation flow path with its terminal open outward. Further, the flow path resistance of the air evacuation flow path for a liquid is made greater than the flow path resistance, for the liquid, of a flow channel from the reagent storage chamber to a reagent feed-out flow path.
Abstract:
A testing chip includes (1) a first chip having a micro flow path that stores reagent; upstream-side opening provided on upstream-side of the micro flow path; downstream-side opening provided on downstream-side of the micro flow path; and one or more sealing members in a small thickness stuck to at least one surface of the first chip to seal the upstream-side opening and the downstream-side opening until the testing chip is used and (2) a second chip having a micro flow path for mixing and reaction between reagent and a specimen and detecting the reaction; and an opening provided on upstream-side of the micro flow path, wherein, when the testing chip is used, the first and second chips are superimposed on each other so that the downstream-side opening of the first chip and the opening of the second chip are positioned on each other.
Abstract:
An analyzer for analysis of a specimen in a testing chip that includes a micropump connecting section that is connected with a micropump to take in liquid from the micropump and includes a micro flow channel in which a reagent and the specimen are mixed so as to react with each other, the analyzer including: a mounting section for mounting the testing chip attachably and detachably thereto; a micropump unit that has a testing chip connecting section to be connected with the micropump connecting section of the testing chip which is mounted on the mounting section, and feeds liquid to the testing chip through the testing chip connecting section; and a pressing mechanism that presses the micropump connecting section and the testing chip connecting section against each other, the connecting sections being connected with each other.
Abstract:
Disclosed herein is a micro fluid transferring system that comprises a micropump having a chamber, a first fluid transferring portion connected to the chamber, and a second fluid transferring portion connected to the chamber. This system is characterized in that at least one of the first and second fluid transferring portions comprises a pressure absorbing section for absorbing or alleviating a liquid vibrational pressure therein.
Abstract:
The object of the present invention is to provide a micro-reactor, equipped with a high-precision liquid feed system of simple structure, capable of high-precision analysis of at least one item. The present invention provides a micro-reactor for biological substance inspection including a sample storage section, a reagent storage section, a sample pre-processing section, a micro-pump connecting section and a branched minute flow path. And a sample pre-processed by the sample pre-processing section is fed into the minute flow path branched off into at least two parts by a micro-pump and a liquid dividing section, and on the downstream side of each of the branched minute flow paths, the sample is fed to a flow path constituting a reaction site, and then to a flow path constituting the detection site, thereby providing simultaneous measurement of a plurality of items of a sample.
Abstract:
An ink jet head for a printer wherein an ink drop is ejected from a nozzle to fly and land on the recording paper to form an image. The ink jet head includes the nozzle for ejecting ink, an ink channel that communicates with the nozzle, a pair of oscillating plates that are opposing to each other on walls of the ink channel, a pair of electrodes disposed in contact with the oscillating plates, an ink chamber for holding the ink, and an inlet for supplying the ink from the ink chamber to the ink channel. A gap between the electrodes is filled with the ink having a relative dielectric constant higher than air. A voltage is applied between the electrodes.
Abstract:
The invention relates to a prism part included in an analysis chip for use in an analysis device for analyzing a specimen utilizing surface plasmon resonance, and being cooperative with a channel member to form a channel for flowing a sample solution containing the specimen. The prism part includes a prism main body into which excitation light for generating surface plasmon is incident, and a gold film formed on a specified surface of the prism main body. The prism main body includes a mixed layer having a predetermined thickness from the specified surface toward the inner side. The mixed layer is formed by ions of gold for the gold film to enter from the specified surface in the formation of the gold film on the specified surface.