摘要:
An interconnect stack and a method of manufacturing the same wherein the interconnect has vertical sidewall vias. The interconnect stack includes a substrate, a metal interconnect formed in the substrate, an etch stop formed on the substrate and the metal interconnect, and an interlayer dielectric (ILD) layer having at least one via formed therein extending through a transition layer formed on the etch stop layer. The via is formed by etching the ILD to a first depth and ashing the interconnect stack to modify a portion of the ILD between the portion of the via formed by etching and the transition layer. Ashing converts this portion of the ILD to an oxide material. The method includes wet etching the interconnect to remove the oxide material and a portion of the transition layer to form a via extending through the ILD to the etch stop layer.
摘要:
A reactor configuration contains a housing connected to a silicon wafer. The silicon wafer has pores extending from a first main area of the silicon wafer into an interior of the silicon wafer, preferably as far as a second main area of the silicon wafer. A catalyst layer at least partly covers the surface of the pores.
摘要:
A microelectronic structure that is suitable, in particular, as part of a storage capacitor includes a semiconductor structure, a barrier structure, an electrode structure, and a dielectric structure made of a high-epsilon material. The electrode structure has a tensile mechanical layer stress. The microelectronic structure is fabricated, in particular, by sputtering platinum in order to form the electrode structure at a sputtering temperature of at least 200° C.
摘要:
A cleaning process for cleaning CVD units is disclosed. In the cleaning process, alkaline earth metal and/or metal-containing process residues, which form an amorphous film on reactor walls, are removed using a dry etching medium containing free diketones at a greatly reduced pressure and an elevated temperature. In the process, the free diketones react with the alkaline earth metals or metals to form volatile complexes.
摘要:
An optical structure includes a substrate having semiconductor material and a grating structure. The grating structure has the property of emitting at least one frequency band so that light having a frequency from that frequency band cannot propagate in the grating structure. The grating structure has a configuration of pores and a defective region. The pores are disposed outside the defective region in a periodic array, and the periodic array is disturbed in the defective region. A surface of the grating structure is provided with a conductive layer at least in the vicinity of the defective region. A method for producing the optical structure is also provided.
摘要:
A substrate made from silicon has a first region and a second region. Through pores are formed in the first region. Pores that do not traverse the substrate are provided in the second region. The production of the work piece is performed with the aid of electrochemical etching of the pores. The entire surface of the substrate is covered with a mask layer that is structured photolithographically on the rear of the substrate. The bottoms of the pores in the second region are etched clear, preferably using KOH.
摘要:
A method for fabricating a capacitor for a semiconductor memory configuration. In this case, a selectively etchable material is applied to a conductive support, which is connected to a semiconductor body via a contact hole in an insulator layer, and patterned. A first conductive layer is applied thereon and patterned. A hole is introduced into the first conductive layer, through which hole the selectively etchable material is etched out. A cavity is produced under the first conductive layer in the process. The inner surface of the cavity and the outer surface of the first conductive layer are provided with a dielectric layer, to which a second conductive layer is applied and patterned.
摘要:
To produce a silicon capacitor, hole apertures at whose surface a conductive zone (40) is formed by doping and whose surface is provided with a dielectric layer (6) and a conductive layer (7) are generated in an n-doped silicon substrate (1). To compensate for mechanical strains in the silicon substrate (1) brought about by the doping of the conductive zone (40), the conductive zone (40) is additionally doped with germanium which is outdiffused from a germanium-doped layer.