Abstract:
The invention relates to negative T-cell signal inducing chimeric antigen receptor (N-CAR or i-CAR) and to T-cells comprising such N-CAR as well as a positive T-cell signal inducing CAR (P-CAR) as well as their use in therapy.
Abstract:
The present invention relates to a method to modulate the level of activation of an engineered immune cell (such as a Chimeric Antigen Receptor T-cell) for immunotherapy. The present invention also relates to cells obtained by the present method, preferably comprising said modulable/tunable chimeric antigen receptors for use in therapeutic or prophylactic treatment.
Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Abstract:
The present invention relates to the use of “off-the-shelf” allogeneic therapeutic cells for immunotherapy in conjunction with chemotherapy to treat patients with cancer. In particular, the inventors develop a method of engineering allogeneic T-cell resistant to chemotherapeutic agents. The therapeutic benefits afforded by this strategy should be enhanced by the synergistic effects between chemotherapy and immunotherapy. In particular, the present invention relates to a method for modifying T-cells by inactivating at least one gene encoding T-cell receptor component and by modifying said T-cells to confer drug resistance. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer.
Abstract:
The present invention relates to a method for the detection of a specific nucleic acid. Specifically, the invention provides a method and kits for detecting the presence of a specific nucleic acid using engineered DNA-binding domains such as Transcription Activator Like-Effector (TALE) domain or modular base-per-base binding domains (MBBBD). The method of the invention is particularly useful for in vitro diagnostic application.
Abstract:
The present invention is in the field of the gene editing molecular tools. The present invention relates to rewritten nucleic acid sequences encoding repeated DNA recognition motifs of TALE (Transcription Activator-Like Effector) proteins. These nucleic acid sequences allow assembly and cloning of TALE repeats in any type of vectors, especially viral vectors. The invention thereby contributes to improving gene targeting in cells using TALE derived proteins, in particular for genetic regulation or modification. The present invention is particularly drawn to virus mediated transformation methods, by providing vectors, compositions and kits including said new nucleic acid sequences.
Abstract:
The present invention is in the field of a method for genome engineering based on the type II CRISPR system, particularly a method for improving specificity and reducing potential off-site. The method is based on the use of nickase architectures of Cas9 and single or multiple crRNA(s) harboring two different targets lowering the risk of producing off-site cleavage. The present invention also relates to polypeptides, polynucleotides, vectors, compositions, therapeutic applications related to the method described here.