摘要:
Disclosed herein are methods and compositions for the repair of site specific nuclease binding sites by targeted integration and/or targeted excision of one or more sequences into a cell.
摘要:
Disclosed herein are engineered cleavage half-domains; fusion polypeptides comprising these engineered cleavage half-domains; polynucleotides encoding the engineered cleavage half-domains and fusion proteins; and cells comprising said polynucleotides and/or fusion proteins. Also described are methods of using these polypeptides and polynucleotides, for example for targeted cleavage of a genomic sequence.
摘要:
The presently claimed invention offers programmable and precise regulation of Cas9 functions by utilizing a set of compact Cas9 derivatives created by deleting conserved HNH and/or REC-C domains based on the structural information across variant class 2 CRISPR effectors. In addition, a novel strategy for engineering the dimeric gRNA-guided nuclease by splitting the mini-dSaCas9 and fusing the FokI domain right after the split point is claimed to increase the on-target DNA cleavage efficiency and potentially reduce the off-target effect because of a closer proximity of dimeric Fold nuclease to the target sequence. By combining the optimized and compact gRNA expression cassette and the downsized SaCas9 derivatives, the entire CRISPR/Cas system with different effector domains for transactivation, DNA cleavage and base editing is loaded into a single AAV virus. Such an all-in-one AAV-CRISPR/Cas9 system will be particularly appealing in biomedical applications that require safe and efficient delivery in vivo.
摘要:
The present invention relates to a method for in vitro transcription of a linear template DNA which is produced using an immobilized restriction endonuclease. The invention also relates to mutated restriction enzymes which are suitable for immobilization and a solid support to which these restriction enzymes are immobilized. Further, the present invention relates to an enzyme reactor containing said immobilized restriction endonuclease which enzyme reactor can be used for preparing linearized template DNA. Finally, the present invention relates to the use of said enzyme reactor for preparing a linear template DNA for in vitro transcription. In addition, the present invention relates to a kit comprising the immobilized restriction endonuclease.
摘要:
The presently claimed invention offers programmable and precise regulation of Cas9 functions by utilizing a set of compact Cas9 derivatives created by deleting conserved HNH and/or REC-C domains based on the structural information across variant class 2 CRISPR effectors. In addition, a novel strategy for engineering the dimeric gRNA-guided nuclease by splitting the mini-dSaCas9 and fusing the FokI domain right after the split point is claimed to increase the on-target DNA cleavage efficiency and potentially reduce the off-target effect because of a closer proximity of dimeric FokI nuclease to the target sequence. By combining the optimized and compact gRNA expression cassette and the downsized SaCas9 derivatives, the entire CRISPR/Cas system with different effector domains for transactivation, DNA cleavage and base editing is loaded into a single AAV virus. Such an all-in-one AAV-CRISPR/Cas9 system will be particularly appealing in biomedical applications that require safe and efficient delivery in vivo.
摘要:
Disclosed herein are methods and compositions for targeted integration of an exogenous sequence into the human PPP1R12C locus, for example, for expression of a polypeptide of interest.
摘要:
A method of increasing the biomass of a plant that includes planting a plant having plant cells carrying an exogenous gene that encodes a thermophilic restriction enzyme that promotes double-stranded DNA breakage, and growing the plant at least until after true leaf development, wherein the mean biomass of plants having the plant cells carrying the exogenous gene that are grown at least until after true leaf development is increased in comparison with the mean biomass of plants of the same species that do not carry the exogenous gene that are grown for the same amount of time.
摘要:
The present invention is in the field of genetic editing tools and methods of genetic engineering. It relates to the engineering of rare-cutting endonucleases designed to contract highly repetitive motives in chromosomes, which are at the origin of certain genetic diseases, in particular the so-called “triplet repeat diseases”, such as the Huntington disease. The invention encompasses the method for contracting the repetitive motives, the rare-cutting endonucleases for use to contract repetitive motives in a gene subjected to repeat disorder, the polynucleotides and vectors encoding thereof as well as the resulting pharmaceutical compositions.