摘要:
The present invention provides a semiconductor device having high-speed switching characteristics and high output characteristics. More specifically, the semiconductor device includes a second conductivity type drain layer having a low impurity concentration, for decreasing the efficiency of injecting holes, and a second conductivity type contact layer having a high impurity concentration, for avoiding an increase in contact resistance. With this structure, an increase in ON-state voltage can be avoided while improving the switching rate by the second conductivity type drain layer. That is, the present invention achieves high-speed switching characteristics and high output characteristics at the same time.
摘要:
A high-breakdown-voltage semiconductor device includes a high-resistance semiconductor layer, a drift layer of the first conductivity type selectively formed in the surface of the high-resistance semiconductor layer, a drain layer formed in the surface of the drift layer of the first conductivity type, base layers of the second conductivity type selectively formed in the surface of the high-resistance semiconductor layer, a plurality of island-shaped source layers of the first conductivity type formed in the surfaces of the base layers of the second conductivity type, a gate electrode formed on the base layers of the second conductivity type between the source layers of the first conductivity type and the drift layer of the first conductivity type and between adjacent source layers of the first conductivity type via a gate insulating film, a drain electrode which contacts the drain layer, and source electrodes which contact both the source layers of the first conductivity type and the base layers of the second conductivity type.
摘要:
A high breakdown voltage semiconductor device includes a semiconductor substrate, an insulating layer formed on the semiconductor substrate, an active layer formed on the insulating layer and made of a high resistance semiconductor of a first conductivity type, a first impurity region of the first conductivity type formed in the active layer, and a second impurity region of a second conductivity type formed in the active layer and spaced apart from the first impurity region by a predetermined distance. The first impurity region is formed of diffusion layers. The diffusion layers are superimposed one upon another and differ in diffusion depth or diffusion window width, or both.
摘要:
According to an embodiment, a solid-state imaging device includes: an imaging device including an imaging area including a plurality of pixel blocks each of which includes a plurality of pixels; an image formation lens forming an image on an image formation plane by using light from a subject; an aperture unit including a plurality of aperture elements provided to associate with the plurality of pixel blocks, each of the aperture elements having an aperture portion and a shield portion, light from the image formation lens being filtered by each aperture element; a microlens array including a plurality of microlenses provided to associate with the plurality of aperture elements, each of the microlenses forming an image in the imaging area by using light filtered by an associated aperture element; and a signal processing circuit configured to process a signal of an image taken in the imaging area and estimates a distance to the subject.
摘要:
According to an embodiment, a solid-state imaging device includes: an imaging element formed on a semiconductor substrate; a first optical system configured to focus an image of a subject on an imaging plane; a second optical system including a microlens array including a plurality of microlenses corresponding to the pixel blocks, and re-focusing the image of the imaging plane onto the pixel blocks corresponding to the respective microlenses; a first filter placed on the second optical system, and including a plurality of first color filters corresponding to the microlenses; and a second filter placed on the imaging element, and including a plurality of second color filters corresponding to the first color filters of the first filter. The first and second filters are designed so that the first and second color filters deviate to a periphery of the imaging area, the deviation becoming larger toward the periphery of the imaging area.
摘要:
An optical element according to an embodiment includes: a lens array including a plurality of convex shaped lenses provided on a first surface thereof and taking a flat shape at a second surface which is opposite from the first surface; a lens holder comprising concave portions formed to correspond to respective lenses in the lens array, at a surface opposed to the lens array, each of the concave portions having a size which makes it possible for one of the convex shaped lenses corresponding to the concave portion to fit therein; and a drive unit configured to drive at least one of the lens array and the lens holder to bring the convex shaped lenses in the lens array and the concave portions in the lens holder into an isolation state or a contact state.
摘要:
Certain embodiments provide a solid-state imaging device including: a plurality of pixels provided on a semiconductor substrate, each of the pixels having a semiconductor region that converts incident light from a side of a first face of the semiconductor substrate into signal charges and stores the signal charges; a readout circuit provided on a side of a second face that is the opposite side from the first face, and reading out the signal charges stored in the pixels; and a pixel separation structure provided between adjacent ones of the pixels in the semiconductor substrate, the pixel separation structure including a stack film buried in a trench extending from the first face, the stack film including a first insulating film provided along side faces and a bottom face of the trench, and a fixed charge film provided in the trench to cover the first insulating film and retaining fixed charges that are non-signal charges.
摘要:
According to one embodiment, a solid imaging device includes an imaging substrate, an imaging lens, a microlens array substrate and a polarizing plate array substrate. The imaging substrate has a plurality of pixels formed on an upper side thereof. The imaging lens is provided above the imaging substrate. The optical axis in the imaging lens intersects with the upper side of the imaging substrate. The microlens array substrate is provided between the imaging substrate and the imaging lens. A surface in the microlens array substrate has a plurality of microlenses arranged two-dimensionally. The surface of the microlens array intersects with the optical axis. The polarizing plate array substrate is provided between the imaging substrate and the imaging lens. The plurality of kinds of polarizing plates in the polarizing plate array substrate having polarization axes in mutually different directions are arranged two dimensionally.
摘要:
According to an embodiment, a solid-state imaging device includes: an imaging device including an imaging area including a plurality of pixel blocks each of which includes a plurality of pixels; an image formation lens forming an image on an image formation plane by using light from a subject; an aperture unit including a plurality of aperture elements provided to associate with the plurality of pixel blocks, each of the aperture elements having an aperture portion and a shield portion, light from the image formation lens being filtered by each aperture element; a microlens array including a plurality of microlenses provided to associate with the plurality of aperture elements, each of the microlenses forming an image in the imaging area by using light filtered by an associated aperture element; and a signal processing circuit configured to process a signal of an image taken in the imaging area and estimates a distance to the subject.
摘要:
A MEMS apparatus includes a MEMS unit formed on a semiconductor substrate and a cover provided with a pore and serving to seal the MEMS unit. The pore is sealed with a sealing material shaped in a sphere or a hemisphere.