Abstract:
The present invention is a multilayer substrate comprising, at least, a single crystal substrate, a diamond film vapor-deposited on the single crystal substrate, wherein the single crystal substrate is a single crystal Ir or a single crystal Rh and a method for producing a multilayer substrate comprising, at least, a step of vapor-depositing a diamond film on a single crystal substrate, wherein a single crystal Ir or a single crystal Rh is used as the single crystal substrate. As a result, there is provided a multilayer substrate having a high quality single crystal diamond film with a large area and with a high crystallinity as a continuous film in which the diamond and the single crystal substrate are not broken and a method for producing the multilayer substrate at low cost.
Abstract:
Provided is a magnetic recording medium exhibiting good electromagnetic characteristics in high-density recording The magnetic recording medium employed for magnetically recording signals with a track width equal to or less than 2.0 μm and reproducing the magnetically recorded signals, wherein said magnetic recording medium comprises a magnetic layer comprising a hexagonal ferrite ferromagnetic powder and a binder or comprises a nonmagnetic layer comprise a nonmagnetic powder and a binder and a magnetic layer comprising a hexagonal ferrite ferromagnetic powder and a binder in this order on a nonmagnetic support. Said magnetic layer has a thickness equal to or less than 0.2 μm, and said hexagonal ferrite ferromagnetic powder has an average plate diameter being 1/30 or less of the magnetically recorded track width as well as ½ or less of the thickness of the magnetic layer.
Abstract:
There is disclosed a stencil mask for ion implantation used in an ion implantation process of semiconductor device fabrication comprising at least a base material portion and a stencil portion, wherein the stencil portion has a diamond layer. Thereby, there can be provided a stencil mask for ion implantation used in an ion implantation process of semiconductor device fabrication, which has high resistance to ion irradiation, and which can stably perform ion implantation of high precision and high purity for long time.
Abstract:
There is disclosed a polishing plate for polishing a workpiece by rubbing the workpiece to be processed with the polishing plate, comprising at least a substrate and a polishing material, the polishing material being a vapor phase synthetic polycrystalline diamond film deposited on a surface of the substrate to rub the workpiece to be processed. The present invention provides a polishing plate of which production cost is low and which can effectively polish a surface of a workpiece to be processed comprising a very hard material such as DLC, SiC, SiN, Si or the like and extremely smooth the surface.
Abstract:
There is disclosed a surface acoustic wave device having at least a diamond film, a piezoelectric-material film, and an electrode on a base material wherein all or some part of the diamond film consists of an electroconductive diamond in which a dopant is doped. Thereby, there can be provided a surface acoustic wave device wherein breakage of the substrate due to generation of static electricity can be prevented in a device manufacturing process so that the device manufacture yield can be increased, and electrification can be prevented at the time of real use so that high performance can be maintained for a long time, even if it is a surface acoustic wave device using diamond.
Abstract:
A magneto-optical recording medium of magnetic domain enlarging/reproducing system including a recording layer and a reproducing layer, a gate layer selectively extracting each magnetic domain within the recording layer is formed on the recording layer, a magnetic field reinforcement layer reinforcing a leakage magnetic field reaching the reproducing layer is formed on the gate layer, and a blocking layer blocking an exchange coupling force from the magnetic field reinforcement layer to the reproducing layer is formed on the magnetic field reinforcement layer.
Abstract:
A process for producing a magnetic disk having a randomly oriented magnetic powder, comprises: applying a magnetic coating solution containing at least a magnetic powder to a web that is being continuously conveyed, so as to prepare a magnetic layer; applying a first external magnetic field to the magnetic layer while the magnetic layer is wet; and applying a second external magnetic field to the magnetic layer while the magnetic layer is wet, wherein: the first external magnetic field is applied with a set of a first pair of same-pole-opposed magnets with the web interposed therebetween and a second pair of same-pole-opposed magnets with the web interposed therebetween; the first and second pairs are provided on the same plane of the web and on two equal sides of an isosceles triangle so that a perpendicular line dropped from a base of the isosceles triangle forms a line perpendicular to a conveying direction of the web; and the second external magnetic field is an alternating magnetic field, and is applied with a pair of magnets with the web interposed therebetween; the pair of magnets being provided on the same plane of the web, and in a direction perpendicular to the conveying direction of the web.
Abstract:
A diamond film is formed on a silicon single crystal substrate by a microwave plasma CVD or hot filament CVD process using a source gas. The source gas consists essentially of 3.0% to 8.0% by volume of CH4, 87.0% to less than 97.0% by volume of H2, and more than 0.0% to 5.0% by volume of O2. A diamond film having a sufficient crystallinity to serve as a membrane for x-ray lithography and a precisely controlled tensile stress can be formed.
Abstract:
A magnetic recording medium which comprises a support having thereon a substantially nonmagnetic lower layer and a magnetic layer comprising a ferromagnetic metal powder or a ferromagnetic hexagonal ferrite powder dispersed in a binder provided on the lower layer, which is a magnetic recording medium for recording signals of from 0.17 to 2 G bit/inch2 of areal recording density, wherein the coercive force of the magnetic layer is 1,800 Oe or more, and the thickness unevenness of the support is 5% or less of the thickness of the support.
Abstract:
A magnetic recording medium is described, comprising a nonmagnetic support having provided thereon at least a magnetic layer comprising ferromagnetic metal particles dispersed in a binder, wherein the magnetic layer has a coercive force, Hc, of from 1,500 to 4,000 Oe and an Hc/HK ratio of Hc to an anisotropy field, HK, of from 0.30 to 1.00.
Abstract translation:描述了一种磁记录介质,其包括至少在其上设置有分散在粘合剂中的铁磁性金属颗粒的磁性层的非磁性载体,其中该磁性层具有1,500至4000ee的矫顽力Hc和Hc / HK Hc与各向异性场的比值HK为0.30〜1.00。