Abstract:
Methods, devices and systems are provided for performing a random access (RA) procedure. A wireless transmit/receive unit (WTRU) may be configured to receive RA resource sets, where each of the RA resource sets is associated with a node-B directional beam, select an RA resource set from among the RA resource sets, and initiate an RA procedure based on the selected RA resource set. The RA procedure may include selecting multiple preambles which include a preamble for each resource of a plurality of resources corresponding to the selected RA resource set. The WTRU may be configured to sequentially transmit the selected multiple preambles in sequential RA transmissions, and may be configured to receive, from a node-B, in response to the RA transmissions, at least one RA response (RAR), where each of the received at least one RAR corresponds to one of the transmitted multiple preambles.
Abstract:
A wireless transmit/receive unit (WTRU) may identify a plurality of candidate satellite constellations. The WTRU may determine an elevation angle and/or an orbit associated with each of the plurality of candidate satellite constellations. The WTRU may select a satellite constellation from the plurality of candidate constellations for sell selection. The WTRU may identify a plurality of candidate beams associated with the selected satellite constellation. The WTRU may determine an RSRP/RSRQ for each of the plurality of candidate beams. The WTRU may determine a weighted ranking of the plurality of candidate beams. The WTRU may determine the weighted ranking using the determined RSRP/RSRQ, prevailing load intensities, elevation angle, dwelling duration, link switch probability, and/or a quality of service (QoS). The WTRU may select a beam from the plurality of candidate beams for cell selection. The WTRU may select the beam based on the weighted ranking.
Abstract:
Transmit and/or receive beamforming may be applied to the control channel transmission/reception, e.g., in mmW access link system design. Techniques to identify candidate control channel beams and/or their location in the subframe structure may provide for efficient WTRU operation. A framework for beam formed control channel design may support varying capabilities of mBs and/or WTRUs, and/or may support time and/or spatial domain multiplexing of control channel beams. For a multi-beam system, modifications to reference signal design may discover, identify, measure, and/or decode a control channel beam. Techniques may mitigate inter-beam interference. WTRU monitoring may consider beam search space, perhaps in addition to time and/or frequency search space. Enhancements to downlink control channel may support scheduling narrow data beams. Scheduling techniques may achieve high resource utilization, e.g., perhaps when large bandwidths are available and/or WTRUs may be spatially distributed.
Abstract:
Methods, apparatuses, and systems for radio link monitoring (RLM) implemented by a wireless transmit/receive unit (WTRU) are provided. A representative method for RLM includes mapping, by the WTRU, one or more RLM-RS resources to at least one BLER threshold of a plurality of BLER thresholds. The representative method also includes, for each respective RLM resource that is mapped, determining, by the WTRU, a BLER of the respective RLM-RS resource, and comparing the determined BLER of the respective RLM-RS resource with the at least one mapped BLER threshold associated with the respective RLM-RS resource. The representative method further includes generating, based on one or more of the comparisons, a set of in-sync indications and/or a set of out-of-sync indications, and indicating, by the WTRU, one or more attributes associated with the set of in-sync indications and/or the set of out-of-sync indications.
Abstract:
Methods, devices, and systems for communication by a wireless transmit/receive unit (WTRU) associated with a source cell. The WTRU is configured with a conditional reconfiguration which includes a trigger condition and a configured target cell. The WTRU detects an occurrence of an impairment event resulting in impairment to operation of the WTRU in the source cell. If the impairment event satisfies the trigger condition, a reconfiguration is performed with the configured target cell. If the impairment event does not satisfy the trigger condition, a target cell is selected based on a cell selection procedure, and if the is configured with a conditional reconfiguration for the selected target cell, a reconfiguration is performed with the selected target cell; and if the WTRU is not configured with a conditional reconfiguration for the target cell, a reestablishment is performed with the selected target cell.
Abstract:
Methods and apparatus may perform dual-band or multi-band mesh operations. A dual-band mesh station (MSTA) capable of operating in an O-band and a D-band may seek to join a mesh network, and may receive O-band beacons from at least one MSTA in the mesh network, where the O-band beacons may include D-band mesh information. The joining MSTA may transmit D-band beacons in a time-period specified by the O-band beacon, and on a condition that a beacon response message is received, may further transmit D-band association information via O-band management frames to join mesh network on the D-band. The joining MSTA may perform contention-free scheduled access in the D-band while sharing D-band transmission information in the O-band to enable concurrent communication in the D-band by neighboring multi-band MSTAs.
Abstract:
A station (STA) may include an antenna and a processor operatively coupled to the antenna. The antenna and the processor may be configured to receive a request message from an access point (AP). The request message may include identity information of one or more other STAs and an indication to perform measurements of the one or more other STAs. The antenna and the processor may be further configured to perform the measurements of the one or more STAs to determine a link metric associated with each STA of the one or more other STAs. The antenna and the processor may be further configured to send a reply message to the AP after the link metric associated with each STA of the one or more STAs is determined. The reply message may include results of the determination.
Abstract:
Methods and apparatus for initial cell search and selection using beamforming are described. An apparatus is configured with multiple receive beams and includes an antenna and a processor. The processor is operatively coupled to the antenna and sweeps a respective one of the multiple receive beams during each of multiple synchronization sub-frames, using a pre-defined sweep time and dwell period, to detect a synchronization signal. The processor also obtains symbol timing information and a synchronization signal index from the detected synchronization signal. The obtained synchronization signal index corresponds to a synchronization signal index of the set. The process decodes a first broadcast channel using the obtained symbol timing information, the obtained synchronization signal index and a predefined or blind-coded symbol distance between the detected synchronization signal and the first broadcast channel. The process decodes a second broadcast channel using information obtained from decoding the first broadcast channel.
Abstract:
Systems, methods, and instrumentalities are disclosed for joining a node to a network, the method comprising a station associated with a first node sending a first beacon, wherein the first beacon is sent with an indication that the first beacon is sent from a station entity, and wherein the station associated with the first node belongs to a first personal basic service set (PBSS); the station associated with the first node receiving a transmission from a station associated with a second node that indicates that the station associated with the second node wants to associate with the station associated with a first node, wherein the station associated with the second node is unassociated with the first PBSS; the station associated with the first node sending a message to a PBSS Control Point (PCP) associated with a third node, wherein the message is associated with handover preparation; the station associated with the first node receiving acceptance to change personality to a PCP and perform handover; and the station associated with the first node changing to a PCP and performing handover, wherein the station associated with the first node forms a second PBSS and does not belong to the first PBSS, and wherein handover comprises the PCP associated with the first node associating with the station associated with the second node.
Abstract:
Systems, methods, and instrumentalities are provided to implement a method for controlling discontinuous reception (DRX). A wireless transmit/receive unit (WTRU) may enter into a DRX state on a first cell layer. The WTRU may transmit, on a second cell layer, a DRX indication of the first cell layer. The WTRU may receive, on the second cell layer, a deactivation signal corresponding to the first cell layer. The WTRU may deactivate, based on the deactivation signal received on the second cell layer, the first cell layer. The WTRU may receive, on the second cell layer, an activation signal corresponding to the first, cell layer. The WTRU, based on the activation signal, may activate the first cell layer.