Abstract:
A method for a base station to receive an uplink transmission from a user equipment configured with multiple uplink component carriers in a wireless communications system. The method according to one embodiment includes transmitting, to the user equipment, Radio Resource Control (RRC) configuration information for a Sounding Reference Signal (SRS), the RRC configuration information including information for periodically receiving the SRS from the user equipment; transmitting, to the user equipment, Layer 2 (L2) control information indicating states of the plurality of uplink component carriers; and performing a procedure for periodically receiving the SRS from the user equipment on a corresponding uplink component carrier in use of the RRC configuration information. According to whether the corresponding uplink component carrier is in an available state or a non-available state at a time for receiving the SRS, the SRS or no SRS is received from the user equipment, respectively.
Abstract:
A method and communication apparatus for controlling transmission powers in a wireless communication system supporting a plurality of component carriers are described. When a sounding reference symbol (SRS) transmission overlaps with a physical uplink shared channel (PUSCH) transmission and a physical uplink control channel (PUCCH) transmission in a time domain, a check is made as to whether a total of a PUSCH transmission power for the PUSCH transmission on a first component carrier, a PUCCH transmission power for the PUCCH transmission on the first component carrier and a SRS transmission power for the SRS transmission on a second component carrier exceeds a maximum transmission power configured for the communication apparatus. The SRS is dropped if the total of the PUSCH transmission power, the PUCCH transmission power and the SRS transmission power exceeds the maximum transmission power configured for the communication apparatus.
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A method for controlling transmission power by a communication apparatus in a wireless communication system supporting a plurality of component carriers. A total transmission power of a physical uplink shared channel (PUSCH) is calculated for a PUSCH transmission on a first component carrier and a sounding reference symbol (SRS) for a SRS transmission on a second component carrier. The PUSCH transmission is prioritized rather than the SRS transmission if the PUSCH transmission overlaps with the SRS transmission in a time domain and the total transmission power exceeds a maximum transmission power configured for the communication apparatus.
Abstract:
A method for efficiently scheduling virtual resource blocks to physical resource blocks is disclosed. In a wireless mobile communication system, for distributed mapping of consecutively allocated virtual resource blocks to physical resource blocks, when nulls are inserted into a block interleaver used for the mapping, they are uniformly distributed to ND divided groups of the block interleaver, which are equal in number to the number (ND) of physical resource blocks to which one virtual resource block is mapped.
Abstract:
A method for transmitting a downlink signal in a wireless mobile communication system. The method according to one embodiment includes generating a resource indication value (RIV) indicating a start index (S) of consecutive virtual resource blocks (VRBs) and a length (L) of the consecutive VRBs; transmitting downlink control information including resource block allocation information. The downlink control information is common information for plural users, and the resource block allocation information includes the RIV. The method according to the embodiment further includes transmitting the downlink signal on the consecutive VRBs. If Y−1≦└X/2┘, then the RIV is defined by RIV=X(Y−1)+Z, else the RIV is defined by RIV=X(X−Y+1)+(X−1−Z), where X=└NVRB/G┘, Y=L/G, and Z=S/G, in which, L is the length of the consecutive VRBs, S is the start index of the consecutive VRBs, NVRB is the number of VRBs, L is a multiple of G, S is a multiple of G, and G is an integer of 2 or higher.
Abstract:
The present invention provides for transmitting a spread signal in a mobile communication system. The present invention includes spreading a signal using a plurality of spreading codes, wherein the plurality of spreading codes have a spreading factor, multiplexing the spread signal by code division multiplexing, transmitting the multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a first antenna set, and transmitting the same multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a second antenna set.
Abstract:
A method and device for transmitting a reference signal are discussed. The method can be performed by a wireless device, and can include generating a pseudo-random sequence, generating a reference signal based on the pseudo-random sequence, and transmitting the reference signal sequence. The device can include a signal generator coupled with a data processor and configured to generate a pseudo-random sequence and a reference signal based on the pseudo-random sequence. The device can further include a transmit circuitry configured to transmit the reference signal sequence.
Abstract:
A method performed by a wireless device, includes processing information bits used for data transmission in a cell, and generating a reference signal sequence based on a cell identifier of the cell. Further, a device includes a data processor configured to process information bits used for data transmission in a cell, and a reference signal generator configured to generate a reference signal sequence based on a cell identifier of the cell.
Abstract:
A reference signal transmission method in a downlink MIMO system is disclosed. The downlink MIMO system supports a first UE supporting N transmission antennas among a total of M transmission antennas (where M>N) and a second UE supporting the M transmission antennas. The method includes transmitting, by a base station (BS), subframe-associated information which designates a first subframe in which data for the first UE and the second UE is transmitted and a second subframe in which data only for the second UE can be transmitted within a radio frame having a plurality of subframes, and transmitting the first subframe and the second subframe. Reference signals corresponding to antenna ports ‘0’ to ‘N−1’ of the N antennas are mapped to the first subframe, and reference signals corresponding to antenna ports ‘0’ to ‘M−1’ of the M antennas are mapped to the second subframe.