Abstract:
A method for transmitting a codeword in a wireless communication system is disclosed. The method includes generating a codeword by encoding an input signal based on a polar code, acquiring a Hamming weight from a bit sequence of at least a part of the codeword, generating Hamming weight information based on the Hamming weight, and transmitting the Hamming weight information and the codeword to a receiver. The Hamming weight information includes a range indicator indicating a range to which the Hamming weight belongs, among a plurality of ranges.
Abstract:
Provided are a method for allocating a temporary radio network temporary identifier to a terminal within a random access procedure in a wireless communication system, and an apparatus supporting the same. The method for allocating a temporary radio network temporary identifier (T-RNTI) to a user equipment (UE) within a random access procedure in a wireless communication system, includes transmitting, by the UE, a random access preamble to a base station (BS), transmitting, by the UE, a radio resource control (RRC) request message to the BS through a contention-based physical uplink shared channel (PUSCH) resource block in which uplink data can be transmitted without uplink resource allocation scheduling, and receiving, by the UE, an RRC connection setup message identified by a T-RNTI allocated to the UE in response to the RRC request message, wherein the T-RNTI is allocated on the basis of the contention-based PUSCH resource block in which the RRC request message has been transmitted.
Abstract:
Embodiments of the present invention provide a method for allocating and updating an identifier in order to protect the location privacy of a user equipment (UE), and apparatuses for supporting the same. As an embodiment of the present invention, a method for protecting the location privacy of a UE in a wireless access system may comprise the steps of: receiving, from a mobility management entity (MME), an access acceptance message including a globally unique temporary identifier (GUTI) assigned so as not to expose an IMSI of the UE and update period information indicating an update period of the GUTI; determining whether to update the GUTI on the basis of the update period information; transmitting a GUTI update request message to the MME when the update period indicated by the update period information is reached; and receiving a GUTI update message including a new updated GUTI, in response to the GUTI update request message.
Abstract:
A method of transmitting uplink control information (UCI) by a user equipment in a wireless communication system, includes the steps of receiving downlink control information (DCI) indicating a transmission time of the UCI through a prescribed frequency band in a first subframe, receiving a downlink data based on the DCI, and transmitting UCI associated with the downlink data in a second subframe based on the indicated transmission time of the UCI. In this case, the prescribed frequency band on which the DCI is transmitted is configured by a plurality of DCCUs (downlink control channel units) for transmitting the DCI, and the UCI may be transmitted on an UCCU (uplink control channel unit) in the second subframe, a frequency band of the first UCCU being same as a frequency band corresponding to a DCCU of a lowest frequency among the plurality of DCCUs.
Abstract:
A method for identifying a mobile cell causing interference by a terminal connected to a first mobile cell, according to one embodiment of the present invention, comprises the steps of: acquiring system information of a fixed base station to which the first mobile cell is connected through a backhaul interface; acquiring a physical cell identifier of a second mobile cell neighboring the first mobile cell by a cell search; determining whether the second mobile cell causes interference to the first mobile cell on the basis of the physical cell identifier of the second mobile cell and the system information of the fixed base station; and reporting the physical cell identifier of the second mobile cell to the first mobile cell if the interference to the first mobile cell is determined to be caused by the second mobile cell.
Abstract:
A user equipment (UE) for cancelling a self-interference (SI) signal is disclosed. The UE includes a rat-race coupler, a plurality of transceiving antennas capable of transmitting and receiving signals, a receive antenna, a transmission (Tx) chain connected to an input port when the rat-race coupler uses one port as the input port, and a reception (Rx) chain connected to the receive antenna and an isolated port when the rat-race coupler uses the one port as the input port.
Abstract:
Disclosed is a method of transmitting a synchronization signal from a moving cell base station in a wireless communication system. The present invention includes mapping a moving cell synchronization signal sequence generated on a basis of a sequence assigned for a moving cell to a frequency region and transmitting the mapped moving cell synchronization signal sequence. Moreover, the moving cell synchronization signal sequence may be mapped to the frequency region different from a prescribed frequency region for transmitting a synchronization signal for a user equipment unsupportive of the moving cell.
Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment, various signal transmission methods for preventing a loss of control information due to uplink-downlink interference during FDR transmission, a method for constructing a frame structure and an apparatus for supporting the same. A method for configuring a frame structure in a wireless access system supporting FDR transmission according to one embodiment of the present invention may comprise the steps of: negotiating whether to support FDR transmission; allocating, to a predetermined subframe, a downlink control channel and a downlink data channel; allocating, to a predetermined subframe, an uplink data channel for FDR transmission; nulling a resource area of the uplink data channel corresponding to the downlink control channel and allocating the resource area to an empty area; and transmitting resource allocation information about a predetermined subframe, wherein the uplink transmission and the downlink transmission for FDR transmission in a predetermined subframe can be simultaneously performed in the same area.
Abstract:
A first device may encode a first bit sequence of length K including a first information block, a second information block, a first cyclic redundancy check (CRC) for the first information block, and a second CRC for the second information block, based on a polar code of size; transmit a first signal based on the encoded first bit sequence; receive first hybrid automatic repeat request acknowledgement/negative-acknowledgement (HARQ ACK/NACK) information for the first bit sequence; divide the second information block into a first sub information block and a second sub information block and generate a third CRC for the first sub information block based on the first HARQ ACK/NACK information including information indicating failure of the transmission of the second information block; encode a second bit sequence including the third CRC based on the polar code; and transmit a second signal based on the encoded second bit sequence.
Abstract:
A disclosure of the present specification provides a method for transmitting data by a transmitter. The method may comprise the steps of: when a transport block (TB) is divided into n data blocks, adding additional information after each of the n data blocks; and adding a cyclic redundancy check (CRC) after the last additional information. Here, the CRC may be generated on the basis of the n data blocks, and the n pieces of additional information added after each of data blocks.