Abstract:
A silicon chalcogenate precursor comprising the chemical formula of Si(XR1)nR24-n, where X is sulfur, selenium, or tellurium, R1 is hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, each R2 is independently hydrogen, an alkyl group, a substituted alkyl group, an alkoxide group, a substituted alkoxide group, an amide group, a substituted amide group, an amine group, a substituted amine group, or a halogen group, and n is 1, 2, 3, or 4. Methods of forming the silicon chalcogenate precursor, methods of forming silicon nitride, and methods of forming a semiconductor structure are also disclosed.
Abstract:
A method of forming a semiconductor device structure comprises forming at least one 2D material over a substrate. The at least one 2D material is treated with at least one laser beam having a frequency of electromagnetic radiation corresponding to a resonant frequency of crystalline defects within the at least one 2D material to selectively energize and remove the crystalline defects from the at least one 2D material. Additional methods of forming a semiconductor device structure, and related semiconductor device structures, semiconductor devices, and electronic systems are also described.
Abstract:
A magnetic cell includes a magnetic region formed from a precursor magnetic material comprising a diffusive species and at least one other species. An amorphous region is proximate to the magnetic region and is formed from a precursor trap material comprising at least one attracter species having at least one trap site and a chemical affinity for the diffusive species. The diffusive species is transferred from the precursor magnetic material to the precursor trap material where it bonds to the at least one attracter species at the trap sites. The species of the enriched trap material may intermix such that the enriched trap material becomes or stays amorphous. The depleted magnetic material may then be crystallized through propagation from a neighboring crystalline material without interference from the amorphous, enriched trap material. This enables high tunnel magnetoresistance and high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.
Abstract:
Some embodiments include a device having a conductive material, a metal chalcogenide-containing material, and a region between the metal chalcogenide-containing material and the conductive material. The region contains a composition having a bandgap of at least about 3.5 electronvolts and a dielectric constant within a range of from about 1.8 to 25. Some embodiments include a device having a first electrode, a second electrode, and a metal chalcogenide-containing material between the first and second electrodes. The device also includes an electric-field-modifying region between the metal chalcogenide-containing material and one of the first and second electrodes. The electric-field-modifying region contains a composition having a bandgap of at least about 3.5 electronvolts having a low dielectric constant and a low conduction band offset relative to a workfunction of metal of the metal chalcogenide-containing material.
Abstract:
A magnetic cell includes a magnetic region formed from a precursor magnetic material comprising a diffusive species and at least one other species. An amorphous region is proximate to the magnetic region and is formed from a precursor trap material comprising at least one attracter species having at least one trap site and a chemical affinity for the diffusive species. The diffusive species is transferred from the precursor magnetic material to the precursor trap material where it bonds to the at least one attracter species at the trap sites. The species of the enriched trap material may intermix such that the enriched trap material becomes or stays amorphous. The depleted magnetic material may then be crystallized through propagation from a neighboring crystalline material without interference from the amorphous, enriched trap material. This enables high tunnel magnetoresistance and high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.
Abstract:
A magnetic cell includes a magnetic tunnel junction that comprises magnetic and nonmagnetic materials exhibiting hexagonal crystal structures. The hexagonal crystal structure is enabled by a seed material, proximate to the magnetic tunnel junction, that exhibits a hexagonal crystal structure matching the hexagonal crystal structure of the adjoining magnetic material of the magnetic tunnel junction. In some embodiments, the seed material is formed adjacent to an amorphous foundation material that enables the seed material to be formed at the hexagonal crystal structure. In some embodiments, the magnetic cell includes hexagonal cobalt (h-Co) free and fixed regions and a hexagonal boron nitride (h-BN) tunnel barrier region with a hexagonal zinc (h-Zn) seed region adjacent the h-Co. The structure of the magnetic cell enables high tunnel magnetoresistance, high magnetic anisotropy strength, and low damping. Methods of fabrication and semiconductor devices are also disclosed.
Abstract:
Some embodiments include a memory cell having a data storage region between a pair of conductive structures. The data storage region is configured to support a transitory structure which alters resistance through the memory cell. The data storage region includes two or more portions, with one of the portions supporting a higher resistance segment of the transitory structure than another of the portions. Some embodiments include a method of forming a memory cell. First oxide and second oxide regions are formed between a pair of conductive structures. The oxide regions are configured to support a transitory structure which alters resistance through the memory cell. The oxide regions are different from one another so that one of the oxide regions supports a higher resistance segment of the transitory structure than the other.
Abstract:
Some embodiments include a memory cell having a data storage region between a pair of conductive structures. The data storage region is configured to support a transitory structure which alters resistance through the memory cell. The data storage region includes two or more portions, with one of the portions supporting a higher resistance segment of the transitory structure than another of the portions. Some embodiments include a method of forming a memory cell. First oxide and second oxide regions are formed between a pair of conductive structures. The oxide regions are configured to support a transitory structure which alters resistance through the memory cell. The oxide regions are different from one another so that one of the oxide regions supports a higher resistance segment of the transitory structure than the other.