摘要:
A low cost whiplash reduction system for a host vehicle, said host vehicle including a sensor arrangement operable to detect closing velocities of one or more rearwardly approaching objects substantially in a direction of travel of the host vehicle, and a processing arrangement for receiving information from the sensor arrangement indicative of said detected closing velocities, said processing arrangement being operable to actuate adaptive safety features in response to detected velocities of detected rearwardly approaching objects to the host vehicle to automatically selectively apply said adaptive safety features in response to said information received from the sensor arrangement for avoiding or mitigating host vehicle occupant neck whiplash injury occasioned by a crash of the rearwardly approaching object and the host vehicle
摘要:
A seat belt retractor system for a vehicle having a vehicle safety system. The seat belt is retracted at a faster rate when a threat is detected using a high-voltage generated by a local power source.
摘要:
In one embodiment, the present invention is directed to a method to operate a host vehicle having a rearview camera vision sensor, and an electronic controller with memory. The method comprises the steps of determining whether the host vehicle is in reverse gear, activating a rearview camera vision sensor on said host vehicle to detect objects, determining host vehicle motion and path of travel, simultaneously determining an inter-frame difference metric and a histogram difference metric of the field of view of said rearview camera, determining a dynamic scene change, determining a collision threat assessment based upon said dynamic scene change, and activating warnings and collision avoidance moves,
摘要:
The embodiments described herein provide a vehicle seat assembly that is coupled to a floor of a vehicle. The assembly comprises a seat back frame, a seat cushion frame, at least one leg and at least one blocking member. The seat cushion frame is pivotally coupled to the seat back frame. The leg is pivotally coupled to the seat cushion frame and pivotally coupled to the floor of the vehicle. The blocking member is coupled to the seat cushion frame and capable of moving into engagement with the leg as the assembly moves from the folded position to the upright seating position. The blocking member is adapted to block movement of the leg and to stabilize the seat assembly in the event of a vehicle collision.
摘要:
A system and method for protecting an occupant in a vehicle seat, through the use of an occupant protection system is disclosed, wherein the vehicle seat includes a backrest section and a seat section. The occupant protection system includes a first airbag assembly having a first inflatable airbag, wherein the first airbag assembly is containable within an airbag recess located within a vehicle roof portion. A second airbag assembly is included having a second inflatable airbag and a deployment location. The second airbag assembly is mounted to a frame that is integrated with the seat while being external to a seat cushion. The first inflatable airbag is configured to extend downward from the roof portion to below a passenger shoulder-thorax protection region while in an inflated state. The second inflatable airbag is configured to extend upward from the deployment location through a passenger pelvic-thorax protection region while in an inflated state.
摘要:
A control system (10) for a vehicle (16) includes a sensor (35-47) that generates a sensor signal and a stability control system (26). Tire monitoring sensors (20) in each wheel generate tire signals including temperature, pressure and acceleration. The controller (26) is coupled to the sensors (20, 25-47), and generates a first roll condition signal as a function of the sensor signal, and generates a second roll condition signal as a function of the tire signals. The first or second roll condition signals control the rollover control system to mitigate a vehicle rollover event.
摘要:
A vehicle pre-impact sensing and control system generates tailored adaptive warning signals as a function of driver vehicle use. The tailored signals are used in a vehicle controller for determining appropriate driver warning or safety device activations.
摘要:
A vehicle crash safety system includes a pre-crash sensing system generating an object threat assessment and vehicle dynamics data, an occupant sensing system generating occupant characteristic data, and an Occupant Safety Reference Model (OSRM) controller for generating a reference safety restraint deployment profile as a function of the object threat assessment, vehicle dynamics data and occupant characteristic data. An active restraint adaptation (ARA) controller in operative communication with the OSRM controller and a decentralized restraint controller. The ARA controller sends restraint deployment targets, and the safety restraint deployment profile to the decentralized restraint controller. The ARA controller may modify input signals to the decentralized controller based on the real-time occupant position trajectory. The decentralized restraint controller is adapted to operate the restraint system as a function of signals from the ARA controller and real-time occupant-restraint system interactions.
摘要:
A pre-crash sensing system is coupled to a countermeasure system that has at least a first countermeasure and a second countermeasure. The pre-crash sensing system has a vision system (26) that generates an object size signal and an object distance signal. A controller (12) is coupled to the vision system (26) and deploys either the first countermeasure or first and second countermeasures in response to the object distance and object size.
摘要:
A safety system for a host vehicle includes a pre-crash sensing system generating host vehicle dynamics data, a target vehicle threat assessment, and target vehicle bumper or doorsill location data. A ride-height, Dynamic State Self-Turning (DSST) controller generates a reference ride-height signal as a function of the host vehicle dynamics data, target vehicle threat assessment, and target vehicle bumper or doorsill location data. A Rule-Based Height Regulator (RBHR) controller is feedback communication with an adjustable suspension system, is programmed to continuously adjust the host vehicle ride-height with reference to the ride-height signal, and the host vehicle bumper location to optimize the collision conditions between the two vehicles until just prior to impact.