Abstract:
A holographic display apparatus includes a spatial light modulator configured to generate hologram patterns to modulate light; an illuminator configured to emit the light to the spatial light modulator; and a controller configured to control operations of the spatial light modulator and the illuminator, the spatial light modulator being configured to generate, from among the hologram patterns, a first hologram pattern and a second hologram pattern according to the control operations of the controller, the first hologram pattern and the second hologram pattern being configured to form a first hologram image and a second hologram image having different viewpoints, and the controller being configured to set a first phase modulation value of the first hologram pattern and a second phase modulation value of the second hologram pattern to be different from each other such that hologram images having different viewpoints are formed.
Abstract:
A method of manufacturing an X-ray detector includes: applying a mask having an opening on a substrate on which a plurality of charge detection units are positioned; filling the opening with a paste including a photoelectric conversion material that absorbs X-rays to generate charges; and forming a photoconductive layer from the paste by separating the mask from the substrate. A thickness of the paste within the opening is thicker in an area adjacent to at least one edge among edges of the opening than in areas around other edges.
Abstract:
Provided are a backlight unit and a holographic display including the same. The backlight unit may include: a light guide plate; a light source unit configured to adjust a direction of light which is emitted from the light source unit and incident on the light guide plate; and a diffraction device which is disposed on the light guide plate and configured to control a direction of light emitted from the light guide plate.
Abstract:
An X-ray detector may include: a thin film transistor (TFT) unit; and/or a capacitor unit. The capacitor unit may include two or more storage capacitors. The TFT unit may include: a gate electrode on one region of a substrate; a gate insulating layer on the gate electrode; an active layer on the gate insulating layer; and/or a source electrode and a drain electrode respectively on sides of the active layer.
Abstract:
A backlight unit for a holographic display is provided. The backlight unit includes: at least one light source; at least one input coupler; a light guide panel (LGP) that guides light; a first holographic element on a first surface of the LGP; and a second holographic element on a second surface of the LGP, wherein the at least one input coupler is configured to uniformly transmit rays emitted from the at least one light source toward the first holographic element through the LGP, and the LGP is configured to transmit the rays incident from the at least one input coupler toward the first holographic element, and the first holographic element redirects the rays toward the second holographic element, the redirected rays being substantially parallel to one another, and the second holographic element emits rays incident from the first holographic element toward an outside of the LGP.
Abstract:
An apparatus and a method for displaying holographic 3D image are provided. The method includes generating, by a controller, a hologram signal to generate multiple identical hologram images which are shifted with respect to one another by a predetermined distance and overlapped on one another, and modulating, by a spatially light modulator (SLM), light incident on the SLM based on the hologram signal.
Abstract:
A method of removing residual charge from a photoconductive material includes applying a first voltage to the photoconductive material to form an electrostatic field during a collection operation in which x-rays are irradiated onto the photoconductive material; and applying a second voltage to the photoconductor to reduce an amount of residual charge therein during a removal operation, the second voltage being different from the first voltage. In one or more example embodiments, the photoconductive material may include Mercury Iodine (Hgl2).
Abstract:
A phase modulation device includes an upper reflective layer onto which incident light is incident; a lower reflective layer provided on a lower portion of the upper reflective layer; an active layer provided between the upper reflective layer and the lower reflective layer; a first electrode connected to an upper surface of the active layer; and a second electrode connected to a lower surface of the active layer, wherein the lower reflective layer may include a first distributed Bragg reflector (DBR) layer including at least one first low refractive material layer and at least one first high refractive material layer that are alternately stacked, and the at least one first low refractive material layer has a first refractive index and the at least one first high refractive material layer has a second refractive index that is greater than the first refractive index.
Abstract:
Provided a light modulating device including a variable mirror including a plurality of lattice structures, the plurality of lattice structures including a material having a refractive index that changes based on a temperature of the material, a distributed Bragg mirror spaced apart from the variable mirror and provided above the variable mirror, the distributed Bragg mirror including a first material layer and a second material layer that are alternately stacked, and a refractive index of the first material layer being different from a refractive index of the second material layer, and a heating portion configured to heat the plurality of lattice structures and provided below the variable mirror opposite to the distributed Bragg mirror.
Abstract:
Provided is a light modulating apparatus including a plurality of pixels, each pixel of the plurality of pixels being configured to steer incident light and operate as an on-pixel or an off-pixel, a spatial light modulator configured to modulate the incident light and emit the light at a predetermined steering angle, and a processor configured to apply different voltages respectively corresponding to steering angles of the on-pixel.