Abstract:
A processing apparatus of a stack is provided. The stack includes two substrates attached to each other with a gap provided between their end portions. The processing apparatus includes a fixing mechanism that fixes part of the stack, a plurality of adsorption jigs that fix an outer peripheral edge of one of the substrates of the stack, and a wedge-shaped jig that is inserted into a corner of the stack. The plurality of adsorption jigs include a mechanism that allows the adsorption jigs to move separately in a vertical direction and a horizontal direction. The processing apparatus further includes a sensor sensing a position of the gap between the end portion in the stack. A tip of the wedge-shaped jig moves along a chamfer formed on an end surface of the stack. The wedge-shaped jig is inserted into the gap between the end portions in the stack.
Abstract:
To provide a highly browsable data processing device, provide a highly portable data processing device, provide a data processing device which consumes low power, or provide a data processing device having high display quality, the data processing device includes a display portion having flexibility, a plurality of driver circuit portions arranged in the periphery of the display portion, a sensor portion discerning an external state of the display portion, an arithmetic portion supplying image data to the driver circuit portions, and a memory portion storing a program executed by the arithmetic portion. A first mode in which the display portion is unfolded or a second mode in which the display portion is folded is sensed by the sensor. Luminance adjustment processing is carried out by the program in accordance with the first mode or the second mode.
Abstract:
Display of a display device is made less likely to appear divided when a plurality of display panels are used as one screen. Provided is a display device including two display units and a foldable housing that includes a joint portion between the two display units and supports the two display units. Each display unit includes a display panel including a display region and a non-display region and a support having a first surface overlapped with the display region and a second surface that meets the first surface and is overlapped with the non-display region. The two display units are placed in the housing in an opened state such that the first surfaces of the supports face the same direction and the second surfaces of the supports face each other.
Abstract:
A light emitting device comprises a pair of electrodes and a mixed layer provided between the pair of electrodes. The mixed layer contains an organic compound which contains no nitrogen atoms, i.e., an organic compound which dose not have an arylamine skeleton, and a metal oxide. As the organic compound, an aromatic hydrocarbon having an anthracene skeleton is preferably used. As such an aromatic hydrocarbon, t-BuDNA, DPAnth, DPPA, DNA, DMNA, t-BuDBA, and the like are listed. As the metal oxide, molybdenum oxide, vanadium oxide, ruthenium oxide, rhenium oxide, and the like are preferably used. Further, the mixed layer preferably shows absorbance per 1 μm of 1 or less or does not show a distinct absorption peak in a spectrum of 450 to 650 nm when an absorption spectrum is measured.
Abstract:
The present invention provides a light-emitting element, a light-emitting device and an electronic device in which an optical path length through which generated light goes can be changed easily. The present invention provides a light-emitting element including a light-emitting layer between a first electrode and a second electrode, and a mixed layer in contact with the first electrode; in which the light-emitting layer includes a light-emitting substance; the mixed layer includes a hole transporting substance and a metal oxide showing an electron accepting property to the hole transporting substance, and has a thickness of 120 to 180 nm, and when a voltage is applied between the first electrode and the second electrode such that a potential of the first electrode is higher than that of the second electrode, the light-emitting substance emits light.
Abstract:
A display device which exhibits light with high color purity is provided. A display device with low power consumption is provided. An embodiment is a display device which includes a first pixel electrode, a second pixel electrode, a light-emitting layer, a common electrode, a first protective layer, and a semi-transmissive layer. The light-emitting layer includes a first region positioned over the first pixel electrode and a second region positioned over the second pixel electrode. The common electrode is positioned over the light-emitting layer. The first protective layer is positioned over the common electrode. The semi-transmissive layer is positioned over the first protective layer. Reflectivity with respect to visible light of the semi-transmissive layer is higher than reflectivity with respect to visible light of the common electrode. The semi-transmissive layer does not overlap with the first region and overlaps with the second region. For example, the semi-transmissive layer may include an opening in a position overlapping with the first region.
Abstract:
A method for manufacturing a highly reliable display device is provided. A first conductive layer and a second conductive layer are formed; a first conductive film is formed over the first conductive layer and the second conductive layer; a first film is formed over the first conductive film; a first mask film is formed over the first film; the first film and the first mask film are processed to form a first layer and a first mask layer over the first conductive film overlapping with the first conductive layer; an exposed portion of the first conductive film is removed to form a third conductive layer in a region overlapping with the first conductive layer, the first layer, and the first mask layer; a second conductive film is formed over the first mask layer and the second conductive layer; a second film is formed over the second conductive film; a second mask film is formed over the second film; the second film and the second mask film are processed to form a second layer and a second mask layer over the second conductive film overlapping with the second conductive layer; and an exposed portion of the second conductive film is removed to form a fourth conductive layer in a region overlapping with the second conductive layer, the second layer, and the second mask layer.
Abstract:
A display device with high display quality is provided. The display device includes a light-emitting device; a lens provided over the light-emitting device to include a region overlapping with at least the light-emitting device; a protective layer provided to cover the lens; and a coloring layer provided over the protective layer. The light-emitting device includes an EL layer interposed between a common electrode and a pixel electrode. The EL layer contains a first light-emitting material emitting blue light and a second light-emitting material emitting light having a longer wavelength than blue light. The refractive index of the lens is higher than the refractive index of the common electrode, and the refractive index of the protective layer is lower than the refractive index of the lens.
Abstract:
An electronic device capable of detecting a user's body movements is to be provided. The electronic device is display equipment worn in front of the user's eye and capable of detecting the blinking action. The electronic device includes a display apparatus and a light source in a housing, and the display apparatus includes a light-emitting device and a light-receiving device in a display portion. Light emitted by the light source is incident on the user's eye and the vicinity thereof through a mirror and reflected, and the reflected light is detected by the light-receiving device. The amount of light reflected by the eyelid and that by the eyeball are different from each other, which enables the blinking action to be detected. The detection of the blinking action enables the user's fatigue state to be estimated.
Abstract:
A semiconductor device having favorable display quality is provided. The semiconductor device is provided with a display portion, a line-of-sight sensor portion, a control portion, and an arithmetic portion. The line-of-sight sensor portion has a function of obtaining first information showing a direction of a user's line of sight. The arithmetic portion has a function of determining a first region including a gaze point of the user on the display portion with use of the first information and a function of increasing a definition of an image displayed on the first region. Light emitted from the display portion may be used to obtain the first information showing the direction of the line of sight.