摘要:
A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0≦Ms
摘要翻译:通过向磁性材料提供自旋极化电子来记录信息的磁阻元件包括由磁性材料制成并且具有沿与膜表面垂直的方向的第一磁化的第一固定层,制成的自由层 并且具有在垂直于膜表面的方向上的第二磁化强度,由自旋极化电子反转的第二磁化方向以及设置在第一被钉扎层和自由层之间的第一非磁性层 。 自由层的饱和磁化强度Ms满足关系0&nlE; Ms <√{平方根超过()} {Jw /(6&pgr; At)}。 Jw是写入电流密度,t是自由层的厚度,A是常数。
摘要:
The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
摘要:
An inadvertent write can be prevented when a read is performed. The duration of the write current pulse for writing information in the magnetic memory layer is longer than the duration of the read current pulse for reading the information from the magnetic memory layer.
摘要:
The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
摘要:
According to the present invention, along the right and left sides of a rotary shaft, flat faces that serve as sealing faces are formed at the circumferential edges, on the suction chamber side, of semicircular division plates, which define suction chambers and a discharge chamber of a volute casing that is divided into two segments. Two disc plates are prepared as pressure test tools, and are positioned on the right and left sides of the rotary shaft so that they contact the flat faces that are formed around the circumferential edges of the division plates near the suction chambers. The two disc plates are then securely connected to a member in the axial direction. In addition, a bolt fastening structure, which is axially tightened by the member that connects the disc plates axially, is provided in at least one axial direction.
摘要:
A magnetoresistive effect element includes a first magnetic layer, a second magnetic layer, and a first spacer layer. The first magnetic layer has an invariable magnetization direction. The second magnetic layer has a variable magnetization direction, and contains at least one element selected from Fe, Co, and Ni, at least one element selected from Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au, and at least one element selected from V, Cr, and Mn. The spacer layer is formed between the first magnetic layer and the second magnetic layer, and made of a nonmagnetic material. A bidirectional electric current flowing through the first magnetic layer, the spacer layer, and the second magnetic layer makes the magnetization direction of the second magnetic layer variable.
摘要:
There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, a resistance regulating layer is provided in at least one of a pinned layer, a free layer and an non-magnetic intermediate layer. The resistance regulating layer contains, as a principal component, an oxide, a nitride, a fluoride, a carbide or a boride. The resistance regulating layer may be a continuous film or may have pin holes. Thus, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
摘要:
A magneto-resistive element according to an aspect of the present invention includes a free layer whose magnetized state changes and a pinned layer whose magnetized state is fixed. The free layer comprises first and second ferromagnetic layers and a non-magnetic layer which is arranged between the first and second ferromagnetic layers. An intensity of exchange coupling between the first and second ferromagnetic layers is set so that an astroid curve in a hard axis direction opens.
摘要:
There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, a resistance regulating layer is provided in at least one of a pinned layer, a free layer and an non-magnetic intermediate layer. The resistance regulating layer contains, as a principal component, an oxide, a nitride, a fluoride, a carbide or a boride. The resistance regulating layer may be a continuous film or may have pin holes. Thus, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
摘要:
A magnetoresistive effect element includes a first magnetic layer, a second magnetic layer, and a first spacer layer. The first magnetic layer has an invariable magnetization direction. The second magnetic layer has a variable magnetization direction, and contains at least one element selected from Fe, Co, and Ni, at least one element selected from Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au, and at least one element selected from V, Cr, and Mn. The spacer layer is formed between the first magnetic layer and the second magnetic layer, and made of a nonmagnetic material. A bidirectional electric current flowing through the first magnetic layer, the spacer layer, and the second magnetic layer makes the magnetization direction of the second magnetic layer variable.