Abstract:
Methods of triggering a test and measurement instrument having a plurality of inputs include the step of generating a trigger signal in response to every occurrence of any one of a plurality of specified trigger events. A first specified trigger event occurs in at least a first one of the inputs and a second specified trigger event occurs in at least a second one of the plurality of inputs. A specified trigger event may include at least one selected input from the plurality of inputs and a selected activity type. Some methods include configuring each of a plurality of event activity detectors to produce a pulse in a logic signal in response to every occurrence of one of the specified trigger events. The plurality of logic signals are combined in a logical OR circuit to generate the trigger signal. Trigger circuits configured according to these methods are also disclosed.
Abstract:
A time-interleaved digital-to-analog converter system, comprising a digital pre-distorter configured to receive an input digital signal and an error signal and output a distorted digital signal based on the input digital signal and the error signal; a time-interleaved digital-to-analog converter having a first sample rate, the time-interleaved digital-to-analog converter configured to convert the distorted digital signal to an analog signal; and a calibration system. The calibration system includes an analog-to-digital converter having a second sample rate equal to or lower than the first sample rate, the analog-to-digital converter configured to receive the analog signal and covert the analog signal to a down-sampled digital signal, a discrete-time linear model configured to receive the input digital signal and the error signal and output a model signal, and a combiner to subtract the down-sampled digital signal from the model signal to generate the error signal.
Abstract:
An electronic switch includes a substrate and a rotator assembly. The rotator assembly is configured to prevent rotation between a first rotational configuration and a second rotational configuration in a first translational position of the rotator assembly, while the rotator assembly is configured to rotate between the first rotational configuration and the second rotational configuration in a second translational position of the rotator assembly. The second translational position of the rotator assembly is translationally offset from the first translational position of the rotator assembly. An electrical contact of the rotator assembly is configured to electrically connect an electronic input path of the substrate to an electronic output path of the substrate in the first rotational configuration and first translational position of the rotator assembly, but not to electrically connect the electronic input path to the electronic output path in the second rotational configuration of the rotator assembly or in the second translational position of the rotator assembly.
Abstract:
A test and measurement instrument includes a coefficient storage facility coupled to a programmable filter. The coefficient storage facility is configured to store at least two pre-determined filter coefficient sets, and configured to pass a selected one of the at least two pre-determined filter coefficient sets to the filter based on a measurement derived using a compensation oscillator. The measurement may include clock delay and clock skew. In some examples the test and measurement instrument may additionally adjust clock delay and/or clock skew in addition to selecting appropriate filter coefficients.
Abstract:
A test system can include a probe suitable to be coupled between a test measurement device and a device under test (DUT). The probe can include a signal input to receive an active signal from the DUT and a signal output to provide the active signal to the test measurement device. The probe can also include an input ground to connect to the DUT ground and an output ground to connect to the test measurement device ground. A probe ground connection checking device can automatically determine whether the probe ground connections to the DUT ground and test measurement device ground are solid.
Abstract:
A test and measurement instrument, including an input configured to receive a signal-under-test, a user input configured to accept a first trigger event and a second trigger event from a user, a first trigger decoder configured to trigger on an occurrence of the first trigger event and generate a first trigger signal, a second trigger decoder configured to trigger on an occurrence of the second trigger event occurring after the first trigger event and generate a second trigger signal, and an acquisition system configured to acquire the signal-under-test in response to the first trigger signal and store the acquired signal-under-test based on whether the second trigger signal validates or invalidates the first trigger signal.
Abstract:
A test and measurement instrument includes a coefficient storage facility coupled to a programmable filter. The coefficient storage facility is configured to store at least two pre-determined filter coefficient sets, and configured to pass a selected one of the at least two pre-determined filter coefficient sets to the filter based on a measurement derived using a compensation oscillator. The measurement may include clock delay and clock skew. In some examples the test and measurement instrument may additionally adjust clock delay and/or clock skew in addition to selecting appropriate filter coefficients.
Abstract:
A test and measurement system including a device under test, two de-embed probes connected to the device under test, and a test and measurement instrument connected to the two de-embed probes. The test and measurement instrument includes a processor configured to determine the S-parameter set of the device under test based on measurements from the device under test taken by the two de-embed probes.
Abstract:
A test system includes a test and measurement device having an input port for receiving signals for testing or measuring, a reprogrammable test accessory having an output coupled to the input port of the test and measurement device. The reprogrammable test accessory includes a test port structured to accept one or more test signals from a Device Under Test (DUT), a processor, a reprogrammable data protocol analyzer for determining whether data carried by the one or more test signals from the DUT conform to a predetermined data protocol, and a reprogramming facility for modifying the reprogrammable data protocol analyzer from a first configuration to a second configuration. Methods of operation are also described.
Abstract:
A current measurement device includes a shunt having sense leads, the shunt configured to be located in a current path for a current to be measured, and a Rogowski coil at least partially wrapped around the shunt, the current measuring device configured to combine signals from the shunt and the Rogowski coil. A current measurement device includes a shunt having sense leads configured to be located in a current path for a current to be measured, a Rogowski coil in series with the sense leads and at least partially wrapped around the shunt, a compensating pole connected to the Rogowski coil, and an isolation barrier connected to the compensating pole.