Abstract:
A switched capacitor circuit includes an amplifier, a first switched capacitor network, and a second switched capacitor network. Either the first or second switched capacitor network is switched in a sampling configuration or a gain configuration according to connection states of the switches thereof. The amplifier includes a first transistor and a second transistor coupled to the first switched capacitor network, and a third transistor and a fourth transistor coupled to the second switched capacitor network. A first switch is coupled to a first connection point of the first and second transistors, and a second switch is coupled to a second connection point of the third and fourth transistors.
Abstract:
An integrated circuit adapted for ECO and FIB debug comprises: a substrate, a spare cell, a top-layer output terminal pad and a top-layer output terminal pad. The spare cell is disposed in substrate and comprises at least one input terminal and at least one output terminal. The top-layer output terminal pad and the top-layer input terminal pad are disposed in a top metal layer. The top metal layer is disposed over the substrate. The top-layer output terminal pad and the top-layer input terminal pad are electrically coupled to the output terminal and input terminal of the spare cell by a via structure, respectively.
Abstract:
A voltage detection circuit for detecting the voltage level of a first power source. A first transistor includes a first gate, a first source, and a first drain coupled to the first gate. A second transistor includes a second gate, a second source, and a second drain coupled to the second gate. A comparator includes a first input terminal, a second input terminal coupled to the second drain, and an output terminal. A first resistor is coupled between the first input terminal and the first drain. A second resistor is coupled to the first power source. A third resistor is coupled between the second resistor and the first input terminal. A fourth resistor is coupled between the second resistor and input terminal. A fifth resistor is coupled between the first source, and a second power source. A resistive device is coupled between the first source, and the first power source.
Abstract:
A voltage regulator, regulating a supply voltage and outputting a regulated voltage. The voltage regulator comprises a two stage OP which outputs a first voltage and a second voltage according to a reference voltage and a feedback voltage. A NMOS transistor controlled by a voltage detection unit, to receive the second voltage when the detected supply voltage is in a high mode. A PMOS transistor controlled by the voltage detection unit, to receive the first voltage when the detected supply voltage is in a low mode. A feedback circuit for receiving the regulated voltage and outputting the feedback voltage to the two stage OP.
Abstract:
A method for using timing simulation and authentication software of an EDA tool (electronics design automatic tool) to bypass a plurality of clock trees in the EDA tool. The EDA tool contains a plurality of clocking devices that prevent the timing simulation and authentication software from changing an order of the plurality of clocking devices. The method includes measuring a delay time of the clocking device, and providing a first buffer, which is electrically connected to the clocking device, according to the delay time, wherein the delay time of the first buffer approximates the delay time of the clocking device.
Abstract:
An input/output (I/O) device with programmable I/O characteristics is provided for use on an integrated circuit to serve as a communication interface whose input/output characteristics can be set through programmable means to be matched to the external circuitry to which the IC chip is connected for use. This allows the IC chip on which the I/O device is provided to be matched for use with various kinds of external systems. Further, the I/O device can also be provided with a self-control feature that can detect whether the I/O characteristics of the I/O device are matched to the external circuitry and, if not, automatically set the I/O device to the required I/O characteristic. The I/O device can prevent an IC chip from being discarded due to a mismatch in the I/O characteristics with the external circuitry to which the IC chip is connected for use.
Abstract:
A method for performing divided-clock phase synchronization in a multi-divided-clock system, an associated synchronization control circuit, an associated synchronization control sub-circuit and an associated electronic device are provided. The method may include: performing frequency division operations according to a source clock to generate a first divided clock and a second divided clock; performing phase relationship detection on the first divided clock according to the second divided clock to generate a phase relationship detection result signal; performing a logic operation on a first phase selection result output signal and the phase relationship detection result signal to generate a second phase selection result output signal; and outputting one of the second divided clock and an inverted signal of the second divided clock according to the second phase selection result output signal, for further use in a physical layer circuit.
Abstract:
The invention provides a transaction layer circuit of a PCIe. The transaction layer circuit includes transaction layer processing channels, a channel selection circuit, and a merge circuit. The transaction layer processing channels are coupled to a data bus transmitting at least one packet data output by a data link layer circuit of the PCIe. The channel selection circuit receives packet start/end location information in a current clock cycle from the data link layer circuit, and distributes at least one packet data in the current clock cycle to at least one transaction layer processing channel according to the packet start/end location information. The merge circuit is coupled to the transaction layer processing channels and selectively merges transaction layer processing results output by the transaction layer processing channels based on the distribution of the packet data in the current clock cycle to the transaction layer processing channels via the channel selection circuit.
Abstract:
An adaptor device including a first interface, a second interface, a negotiation circuit and a type C manager and controller is provided. The first interface is a universal serial bus (USB) 2.0 interface, and the second interface is a type C USB interface. When the first interface receives a first mode swap request, the type C manager and controller transmits a first mode swap signal in a type C format through the second interface according to the first mode swap request; when the second interface receives a second mode swap request, the negotiation circuit transmits a second mode swap signal in a USB 2.0 format through the first interface according to the second mode swap request.
Abstract:
A clock generation circuit for generating a plurality of output clocks includes: a differential circuit for receiving a single input clock signal and outputting two differential clock signals, and a DC signal; a first polyphase filter for generating four clock signals from the differential clock signals which are a quadrature phase apart from each other; a plurality of setting buffers for setting a same DC point for the four clock signals and generating four resultant clock signals; coupled polyphase filters for generating four more clock signals which are a quadrature apart from each other, and outputting the resultant eight clock signals; a phase mixer, for generating eight output clock signals 45 degrees apart from each other; and a plurality of restoration buffers for setting a DC point for each of the eight clock signals and generating eight output clock signals all riding on a same DC point.