Abstract:
A first packet of a flow received onto an OpenFlow switch causes a flow entry to be added to a flow table, but the associated action is to perform a TCAM lookup. A request is sent to an OpenFlow controller. A response OpenFlow message indicates an action. The response passes through a special dedicated egress fast-path such that the action is applied and the first packet is injected into the main data output path of the switch. A TCAM entry is also added that indicates the action. A second packet of the flow is then received and a flow table lookup causes a TCAM lookup, which indicates the action. The action is applied to the second packet, the packet is output from the switch, and the lookup table is updated so the flow entry will thereafter directly indicate the action. Subsequent packets of the flow do not involve TCAM lookups.
Abstract:
An automaton hardware engine employs a transition table organized into 2n rows, where each row comprises a plurality of n-bit storage locations, and where each storage location can store at most one n-bit entry value. Each row corresponds to an automaton state. In one example, at least two NFAs are encoded into the table. The first NFA is indexed into the rows of the transition table in a first way, and the second NFA is indexed in to the rows of the transition table in a second way. Due to this indexing, all rows are usable to store entry values that point to other rows.
Abstract:
An automaton hardware engine employs a transition table organized into 2n rows, where each row comprises a plurality of n-bit storage locations, and where each storage location can store at most one n-bit entry value. Each row corresponds to an automaton state. In one example, at least two NFAs are encoded into the table. The first NFA is indexed into the rows of the transition table in a first way, and the second NFA is indexed in to the rows of the transition table in a second way. Due to this indexing, all rows are usable to store entry values that point to other rows.
Abstract:
A transactional memory (TM) includes a control circuit pipeline and an associated memory unit. The memory unit stores a plurality of rings. The pipeline maintains, for each ring, a head pointer and a tail pointer. A ring operation stage of the pipeline maintains the pointers as values are put onto and are taken off the rings. A put command causes the TM to put a value into a ring, provided the ring is not full. A get command causes the TM to take a value off a ring, provided the ring is not empty. A put with low priority command causes the TM to put a value into a ring, provided the ring has at least a predetermined amount of free buffer space. A get from a set of rings command causes the TM to get a value from the highest priority non-empty ring (of a specified set of rings).
Abstract:
A bit stream having non-deterministic entropy is generated by a Self-Timed Logic Entropy Bit Stream Generator (STLEBSG). The STLEBSG includes an incrementer and a linear feedback shift register (LFSR), both implemented in self-timed logic as parts of an asynchronous state machine. In response to a command, the incrementer asynchronously increments a number of times and then stops, where the number of times is determined by command. For each increment of the incrementer, the LFSR undergoes a state transition. As the incrementer increments, the LFSR outputs the bit stream. If the command is a run repeatedly command, then after the incrementer stops the incrementer is reinitialized and then again increments the number of times. This incrementing, stopping, reinitializing, and incrementing process is repeated indefinitely. Another command causes the incrementer to be loaded. Another command causes the LFSR to be loaded.
Abstract:
A transactional memory (TM) receives an Atomic Metering Command (AMC) across a bus from a processor. The command includes a memory address and a meter pair indicator value. In response to the AMC, the TM pulls an input value (IV). The TM uses the memory address to read a word including multiple credit values from a memory unit. Circuitry within the TM selects a pair of credit values, subtracts the IV from each of the pair of credit values thereby generating a pair of decremented credit values, compares the pair of decremented credit values with a threshold value, respectively, thereby generating a pair of indicator values, performs a lookup based upon the pair of indicator values and the meter pair indicator value, and outputs a selector value and a result value that represents a meter color. The selector value determines the credit values written back to the memory unit.
Abstract:
A first switch in a MPLS network receives a plurality of packets that are part of a pair of flows. The first switch performs a packet prediction learning algorithm on the first plurality of packets and generates packet prediction information that is communicated to a second switch within the MPLS network utilizing an Operations, Administration, and Maintenance (OAM) packet (message). In a first example, the first switch communicates a packet prediction information notification to a Network Operations Center (NOC) that in response communicates a packet prediction control signal to the second switch. In a second example, the first switch does not communicate a packet prediction information notification. In the first example, the second switch utilizes the packet prediction control signal to determine if the packet prediction information is to be utilized. In the second example, second switch independently determines if the packet prediction information is to be used.
Abstract:
Software update information is communicated to a network appliance either across a network or from a local memory device. The software update information includes kernel data, application data, or indicator data. The network appliance includes a first storage device, a second storage device, an operating memory, a central processing unit (CPU), and a network adapter. First and second storage devices are persistent storage devices. In a first example, both kernel data and application data are updated in the network appliance in response to receiving the software update information. In a second example, only the kernel data is updated in the network appliance in response to receiving the software update information. In a third example, only the application data is updated in the network appliance in response to receiving the software update information. Indicator data included in the software update information determines the data to be updated in the network appliance.
Abstract:
A flow key is determined from an incoming packet. Two hash values A and B are then generated from the flow key. Hash value A is an index into a hash table to identify a hash bucket. Multiple simultaneous CAM lookup operations are performed on fields of the bucket to determine which ones of the fields store hash value B. For each populated field there is a corresponding entry in a key table and in other tables. The key table entry corresponding to each field that stores hash value B is checked to determine if that key table entry stores the original flow key. When the key table entry that stores the original flow key is identified, then the corresponding entries in the other tables are determined to be a “lookup output information value”. This value indicates how the packet is to be handled/forwarded by the network appliance.
Abstract:
A transactional memory (TM) receives a lookup command across a bus from a processor. The command includes a memory address, a starting bit position, and a mask size. In response to the command, the TM pulls an input value (IV). The memory address is used to read a word containing multiple result values (RVs) and multiple threshold values (TVs) from memory. A selecting circuit within the TM uses the starting bit position and mask size to select a portion of the IV. The portion of the IV is a lookup key value (LKV). The multiple TVs define multiple lookup key ranges. The TM determines which lookup key range includes the LKV. A RV is selected based upon the lookup key range determined to include the LKV. The lookup key range is determined by a lookup key range identifier circuit. The selected RV is selected by a result value selection circuit.