摘要:
A system and method are provided for imaging and treatment of tumorous tissue in a patient. In an embodiment, the system includes a radiation source for generating a radiation beam comprising high-energy photons with low energy distributions for high contrast imaging along with high energy distributions for efficient treatment dose delivery. The radiation source includes a charged particle accelerator that generates charged particles having energies of less than 6 megavolts (MV), a target to receive the charged particles and generate the high-energy photons of the radiation beam, and a collimator to emit the radiation beam. The system further includes an imaging device of high detective quantum efficiency to define a target region of the tumorous tissue in the patient using the radiation beam, and a controller to determine the shape and modulate the dose for treatment of the tumorous tissue based on the defined target region, using the radiation beam.
摘要:
In one embodiment of the invention, a method for irradiating a target is disclosed. A proton beam is generated using a cyclotron. A first information is provided to an energy selection system. An energy level for the protons is selected using an energy selection system based on the first information. The first information comprises a depth of said target. The proton beam is routed from the cyclotron through a beam transfer line to a scanning system. A second information is provided to the scanning system. The second information comprises a pair of transversal coordinates. The proton beam is guided to a location on the target determined by the second information using a magnet structure. The target is irradiated with the protons.
摘要:
A scintillation material is longitudinally packaged in a circumferentially surrounding sheath, where the sheath has a lower index of refraction than the scintillation material, to form a scintillation optic or scintillation fiber optic. The scintillation material yields secondary photons upon passage of a charged particle beam, such as a positively charged residual particle beam having transmitted through a sample. The internally generated secondary photons within the sheath are guided to a detector element by the difference in index of refraction. Multiple scintillation optics are assembled to form a two-dimensional scintillation array coupled to a two-dimensional detector array, such as for use in determination of state of the residual charged particle beam, determination of an exit point of the particle beam from the sample, path of the treatment beam, and/or tomographic imaging.
摘要:
Generally, a method or apparatus for tomographically imaging a sample, such as a tumor of a patient, using positively charged particles positions n two-dimensional detector arrays on n surfaces of a scintillation material or scintillator, respectively. Resultant from energy transfer from the positively charged particles, secondary photons are emitted from the scintillation material and detected by the plurality of two-dimensional detector arrays, where each detector array images the scintillation material. Combining signals from the plurality of two-dimensional detector arrays, the path, position, energy, and/or state of the positively charged particle beam as a function of time and/or rotation of the patient relative to the positively charged particle beam is determined and used in tomographic reconstruction of an image of the sample or the tumor.
摘要:
To overcome the difficulties inherent in conventional proton therapy systems, new techniques are described herein for synchronizing the application of proton radiation with the periodic movement of a target area. In an embodiment, a method is provided that combines multiple rescans of a spot scanning proton beam while monitoring the periodic motion of the target area, and aligning the applications of the proton beam with parameters of the periodic motion. For example, the direction(s) and frequency of the periodic motion may be monitored, and the timing, dose rate, and/or scanning direction and spot sequence of the beam can be adjusted to align with phases in the periodic motion
摘要:
The invention comprises a patient specific tray insert removably inserted into a tray frame to form a beam control tray assembly, which is removably inserted into a slot of a tray receiver assembly proximate a gantry nozzle of a charged particle cancer treatment system. Optionally, multiple tray inserts, each used to control a different beam state parameter, are inserted into corresponding slots of the tray receiver assembly where the multiple inserts are used to control beam intensity, shape, focus, and/or energy. The beam control tray assembling includes an identifier, such as an electromechanical identifier, of the particular insert type, which is communicated to a main controller, such as via the tray receiver assembly along with slot position and/or patient information.
摘要:
A radiation therapy delivery system (10) includes an ultrasound imaging unit (26), a radiation therapy delivery mechanism (12, 56, 70, 88), a plurality of fiducials (22, 90) located internal to the subject, an image fusion unit (40), and a delivery evaluation unit (38). The ultrasound imaging unit (26) includes a transducer (30) that emits ultrasonic sound waves to image in real-time an anatomic portion of a subject (16) in a first coordinate system. The radiation therapy delivery mechanism (12, 56, 70, 88) delivers amounts of therapeutic radiation in the anatomic portion of the subject in a second coordinate system. The fiducials (22, 90) include implants or a trans-rectal ultrasound probe (80). The image fusion unit (40) registers locations of the plurality of fiducials to at least one of the first and the second coordinate system and tracks the locations of the fiducials in real-time. The delivery evaluation unit (38) identifies locations and the amounts of delivered therapeutic radiation relative to the imaged real-time anatomic portion of the subject.
摘要:
The invention comprises a positively charged particle based cancer therapy system integrated with at least one off-axis imaging system, where elements of the off-axis imaging system and the cancer therapy system are co-positioned/co-rotated with a gantry. The imaging apparatus optionally functions with a tomography system using the positively charged particles of the cancer therapy system for enhanced patient/tumor imaging at and/or prior to a time of treatment.
摘要:
Photon-based radiosurgery is widely used for treating local and regional tumors. The key to improving the quality of radiosurgery is to increase the dose falloff rate from high dose regions inside the tumor to low dose regions of nearby healthy tissues and structures. Dynamic photon painting (DPP) further increases dose falloff rate by treating a target by moving a beam source along a dynamic trajectory, where the speed, direction and even dose rate of the beam source change constantly during irradiation. DPP creates dose gradient that rivals proton Bragg Peak and outperforms Gamma Knife® radiosurgery.
摘要:
There is presented a method 100 and apparatus 200 to measure the surface of the patient (thorax and abdominal regions), e.g., during therapy delivery and (if necessary) while imaging. Together with biomechanical considerations the position of internal structures of the patient, such as an organ, and optionally a tumor in an organ, is inferred from the measured patient surface. In case the patient breaths and thus the organ and/or tumor moves, the position may be determined, which may be advantageous during, e.g., radiation therapy, since it enables that whenever the tumor is at the right position according to the radiation therapy plan, the radiation is switched on. In a specific embodiment, a finite element model is employed.