Abstract:
An expandable well screen has a desirable thin-wall construction together with a simplified fabrication method. In fabricating the screen, a flexible sheet of metal mesh filter media is diffusion bonded to an inner side of a perforated metal sheet which is then deformed to a tubular shape to form a filter structure having an outer perforated tubular shroud interiorly lined with the filter media. The tubular filter structure is telescoped onto a perforated base pipe and has its opposite ends sealingly secured thereto to complete the expandable well screen.
Abstract:
A barrier filter useful for aseptically discharging both gaseous and liquid fluids from a chemical process system is disclosed The barrier filter comprises, within a common enclosure, one or several filter membranes having singularly or collectively a mixture or hydrophobic and hydrophilic regions. The common enclosure of the barrier filter is provided with a fluid inlet and a fluid outlet. All filter membranes are located within the fluid path between the fluid inlet and the fluid outlet. A variety of membrane-based systems, into which such barrier filter is installed, are also disclosed.
Abstract:
An expandable well screen has a desirable thin-wall construction together with a simplified fabrication method. In fabricating the screen, a flexible sheet of metal mesh filter media is diffusion bonded to an inner side of a perforated metal sheet which is then deformed to a tubular shape to form a filter structure having an outer perforated tubular shroud interiorly lined with the filter media. The tubular filter structure is telescoped onto a perforated base pipe and has its opposite ends sealingly secured thereto to complete the expandable well screen.
Abstract:
Expansion resistant filter cartridge assemblies are provided that facilitate filtering of strong solvent solutions. The filter cartridge assemblies generally include a cylindrical filter element defining an outer periphery, an inner periphery and opposed end surfaces, a perforated cage operatively associated with the outer periphery of the filter element, a perforated core operatively associated with the inner periphery of the filter element and having opposed ends and a predetermined length, and an end cap operatively associated with each of the opposed end surfaces of the filter element and bonded to each end of the core. The perforated cage generally includes an expansion region of about 2.5% to about 4% of the total length of the filter cartridge, e.g., a region of axial discontinuity or a plurality of angular struts, to accommodate swelling and/or dimensional expansion of the cage without adversely affecting the integrity of the filter cartridge assembly. Alternatively, an expandable net material may be provided to accommodate expansion/swelling thereof. The core of the filter cartridge assembly is advantageously fabricated from material(s) that resist swelling/expansion when exposed to strong solvent solutions, e.g., glass filled polypropylene, stainless steel and/or a fluorinated aliphatic hydrocarbon.
Abstract:
A filter element according to the present disclosure includes a plurality of longitudinally extending pleats including outwardly radiating primary pleats and inwardly radiating secondary pleats, with at least one secondary pleat positioned between two adjacent primary pleats. Each primary pleat has a predetermined radial height, and each secondary pleat has a radial height that is less than the radial height of each primary pleat and different from the radial height of at least one other secondary pleat. A filter element according to the present disclosure provides greater filter area, an increased overall filter density, and access to more radial flow paths at the outer diameter of the filter element.
Abstract:
A main filter for an airplane fuel circuit or a fuel circuit for any type of mechanism, the filter having a first and second entry, which go directly into a chamber containing a filtering unit, the first entry receiving the fuel at a temperature essentially equal to that of the second entry which receives a hotter fuel which has passed through a heat exchanger. The filter prevents clogging due to ice formation on the filtering unit of the filter or at least inhibits such clogging. A fuel circuit using such a filter is also disclosed.
Abstract:
A particle control screen assembly for a perforated pipe used in a well, a sand filter system, and methods of making same are provided. The screen assembly includes a woven mesh filter media disposed about an inner surface of the perforated pipe, and a protective wrapper disposed about the filter media. The protective wrapper comprises a radially inner perforated layer and a radially outer layer that is disposed between the inner layer and the filter media. A surface of the outer layer that faces the inner perforated layer has a non-smooth contour, with this surface of the outer layer having portions in direct contact with an outer surface of the inner layer. The outer layer is provided with apertures that are disposed in such a way that fluid cannot flow from the inner surface of the inner perforated layer directly radially both through holes of the inner layer and through the apertures of the outer layer.
Abstract:
A particle control screen assembly for a perforated pipe used in a well, a sand filter system, and methods of making same are provided. The screen assembly includes a woven mesh filter media disposed about the perforated pipe, and a protective wrapper disposed about the filter media. The protective wrapper comprises an outer perforated layer and an inner layer that is disposed between the outer layer and the filter media. A surface of the inner layer that faces the outer perforated layer has a non-smooth contour, with this surface of the inner layer having portions in direct contact with an inner surface of the outer layer. The inner layer is provided with apertures that are disposed in such a way that fluid cannot flow from the outer surface of the outer perforated layer directly radially both through holes of the outer layer and through the apertures of the inner layer.
Abstract:
An improved electro-coalescent/magnetic separation (ECMS) system for removing contaminants from water, including desalinization, comprises a device for exposing a stream of water to be treated to an electric field, followed by introduction of ionized coagulating substances, including ionized gases and/or metal ions, followed by plural filter stages. The first filter stage may comprise a polarizable glass, alumina, or ceramic media provided as a bed in a tank with an underdrain, so as to provide substantial residence time. A polishing filter may comprise a very fine fiber or organic gel filter element confined between relatively flexible electrically-conductive screen members and provided with a DC power supply to polarize the filter. This assembly is confined between relatively rigid, perforated members such that the filter assembly can move slightly upon backwash to dislodge caked-on contaminants or the like, while preserving the structural integrity of the filter assembly.
Abstract:
A gap filter for liquids of gases which has a filter body 13 which encloses a clean space within a filter housing and separates it from a dirt space. The filter body 13 is supported by an element which is constructed as a safety filter 14.