Abstract:
Compositions having a plurality of nanoparticles and nano-sheets are disclosed. Methods of making and using the compositions are also disclosed.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
The present invention provides a modified solid stick composition comprising a thermosetting plasticizer, a resin, a lubricant, a friction modifier, or a combination thereof. The solid stick compositions may be used for application between two metal surfaces in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems. A method of reducing energy consumption, or controlling friction between a metal surface and a second metal surface by applying the solid stick composition to one or more than one of the metal surfaces, is also provided.
Abstract:
A piston for an internal combustion engine includes a piston base material and a film of lubrication coating composition. The coating composition has an inner coating layer formed on a surface of the piston base material and an outer coating layer formed on a surface of the inner coating layer. Each of the inner coating layer and the outer coating layer contains at least one of a polyamide-imide resin, a polyimide resin and an epoxy resin as a binder. The inner coating layer contains 0 to 50 wt % of at least one of graphite and molybdenum disulfide as a solid lubricant, whereas the outer coating layer contains 50 to 95 wt % of at least one of graphite and molybdenum disulfide as a solid lubricant.
Abstract:
The production of solid lubricant agglomerates by combining solid lubricant powder, an inorganic binder, other fillers if optionally desired, and a liquid to form a mixture, and driving off the liquid to form dry agglomerates which are subsequently classified by size or milled and classified by size to yield agglomerates of a desired size range. These agglomerates are then treated to stabilize the binder, thereby strengthening the binder and rendering it nondispersible in the liquid. The undesired size ranges can be readily recycled because the agglomerates with untreated binder can be reprocessed, thereby promoting high recovery rates.
Abstract:
Forge lubrication processes are disclosed. A solid lubricant sheet is placed between a workpiece and a die in a forging apparatus. Force is applied to the workpiece with the die to plastically deform the workpiece. The solid lubricant sheet decreases the shear factor for the forging system and reduces the incidence of die-locking.
Abstract:
The present invention is directed to an apparatus for distributing a cable-pulling composition onto a cable as it is being pulled through a conduit. In one embodiment, the cable pulling composition is a block of an enhanced composition, e.g., consisting essentially of boron nitride that facilitates the pulling of cables through conduits. The invention further relates to a method for pulling cables through conduits by applying an effective amount of boron nitride composition onto the cable surface through the use of the cable-pulling apparatus of the invention.
Abstract:
An anti-seize composition includes lubricating solids and at least one of a material selected from a grease and an oil. The lubricating solids include at least 15 weight percent of nano-sized lubricating solid particles. The nano-sized lubricating solid particles each have at least one dimension, on average, of less than 500 nm.
Abstract:
A piston for an internal combustion engine includes a piston base material and a film of lubrication coating composition. The coating composition has an inner coating layer formed on a surface of the piston base material and an outer coating layer formed on a surface of the inner coating layer. Each of the inner coating layer and the outer coating layer contains at least one of a polyamide-imide resin, a polyimide resin and an epoxy resin as a binder. The inner coating layer contains 0 to 50 wt % of at least one of graphite and molybdenum disulfide as a solid lubricant, whereas the outer coating layer contains 50 to 95 wt % of at least one of graphite and molybdenum disulfide as a solid lubricant.
Abstract:
A calcium zinc phosphate-type coating is formed on at least one of those surfaces of an inner ring, an outer ring and rolling elements (balls) and further a cage (if the cage is used) (which form a touchdown bearing) contacting other members, and further a molybdenum disulfide coating is formed thereon. By doing so, the adhesion of the molybdenum disulfide coating is enhanced by microscopic pits and projections due to crystal grains on the surface of the calcium zinc phosphate-type coating, and also even when the molybdenum disulfide coating is worn out, the wearing-out of a substrate can be suppressed by the lubricating ability of the calcium zinc phosphate-type coating underlying it.