Abstract:
In an elevator rope, an inner layer rope includes: a plurality of steel inner layer strands; and a resin inner layer rope coating body that is coated onto an outer circumference. A plurality of outer layer strands are twisted together on an outer circumference of the inner layer rope. The outer layer strands each include: an outer layer strand fiber core; and a plurality of steel wires that are twisted together on an outer circumference of the outer layer strand fiber core.
Abstract:
To provide a pneumatic tire wherein the lightweight properties of a tire is secured while improving the plunger energy and BES resistance thereof, which is particularly suitable for tires for a large passenger car or extra load tires.A pneumatic tire comprising a carcass 1 as a skeleton, and at least two belt layers 2a, 2b each formed by rubberizing a plurality of steel cords arranged obliquely with respect to the tire circumferential direction on the outside in the tire radial direction of the crown portion of the carcass is provided. The steel cord is composed of two or more core wires and five to seven sheath wires twisted together around the core wires; the interval between adjacent steel cords in the belt layer is more than 1.0 mm and not more than 1.50 mm; and the gauge of the belt layer is not less than 1.20 mm and not more than 1.60 mm.
Abstract:
An object of the present invention is to make it possible to provide a cord, in particular, a cord for reinforcing a rubber article in which rubber permeation properties are improved by coating filaments as constituents of the cord with rubber in a reliable and stable manner. The cord of the present invention is produced by, when the metal filament is guided to an extruder and extruded together with rubber from a mouthpiece of the extruder so that the metal filament is coated with the rubber, juxtaposing plural metal filaments in the mouthpiece and extruding the metal filaments together with rubber.
Abstract:
A steel cord (10) adapted for the reinforcement of rubber products, comprises a core strand (12) and six peripheral strands (14) concentrically surrounding the core strand (12). Each of the core and peripheral strands (12, 14) comprises a center of two or more center filaments (16) and two layers of filaments surrounding the center. The core strand (12) has a diameter D1 which is greater than the diameter D2 of the peripheral strands (14). All the filaments (18, 20) of each layer have substantially the same diameter and a radially outer layer has a twist angle which is greater than a twist angle of a radially inner layer of the same strand. Each of the strands (12, 14) in the cord is composed of no more than twenty-six filaments (16, 18, 20) being twisted together.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. incorporating a composition made of rubber in the uncrosslinked state referred to as “filling rubber”, the said cable comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a first sheathing step in which the core (C1) is sheathed with the filling rubber; a first assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named “core strand” (C1+C2); downstream of the said assembling point, a second sheathing step in which the core strand (C1+C2) is sheathed with the filling rubber; a second assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2) thus sheathed; a final twist-balancing step.