Abstract:
An ECU executes a program including the steps of: controlling, when the phase of an intake valve is a phase advanced relative to a threshold value CA (FF) (NO in S106), an electric motor operating an intake VVT mechanism by feedback control (S202); and controlling, when the phase of the intake valve is a phase retarded relative to the threshold value CA (FF) (YES in S106), the electric motor by feed-forward control (S200). Under the feed-forward control, a duty command value is output that is smaller than an upper limit of a duty command value under the feedback control.
Abstract:
A control method for an electro-mechanical camshaft phase shifting devices in general, and a control method for an electro-mechanic camshaft phase shifting device with a self-locking mechanism in particular. The control method takes advantage of a cam shaft reaction torque in conjunction with a frictional self-locking feature of an electro-mechanical camshaft phase shifting device to simplify the control structure and to reduce the actuating torque required for the associated electric machine, consequently reducing the size of electric machine.
Abstract:
An adjustment device for a camshaft includes a brake system and a superposition gear system connected on a drive output side to the camshaft and on the drive input side to the crankshaft, such that to adjust the camshaft the superposition gear system dissipates part of the energy from the drive side into the brake system. The brake system is a frictional brake system, such that the necessary braking force is produced by a friction lining that operates in a slipping condition.
Abstract:
A driven-side rotator is rotatable synchronously with a camshaft and is supported between a gear member and a sprocket member of the driving-side rotator in an axial direction. A stopper portion of the driven-side rotator is adapted to contact the driving-side rotator in a rotational direction to limit a change in a relative phase between the crankshaft and the camshaft. The stopper portion radially outwardly projects from a small diameter portion provided at one end part of the driven-side rotator. A large diameter portion is provided at the other end part of the driven-side rotator and has a radial size that is measured from a rotational axis to a radially outer peripheral surface of the large diameter portion and is equal to or larger than that of the stopper portion.
Abstract:
In a camshaft operating unit having a friction torque variation simulation arrangement for controlling a camshaft adjustment device with at least two camshafts one of which is at least adjustable camshaft and at least one camshaft adjusting unit, the friction torque variation simulation arrangement is provided to simulate a friction torque camshaft required to rotate the camshaft.
Abstract:
In a camshaft adjusting device for adjusting a phase position of a camshaft, including a rotary actuator having a stator and at least one axially displaceable rotor and including a gear mechanism which is arranged operatively between two of at least three shafts, one of the shafts being a control shaft which is acted upon by the rotary actuator, one of the shafts being a drive shaft which is connected to the crankshaft, and one of the shafts being an output shaft which is connected to the camshaft, a compact locking structure is provided whereby at least two of the at least three shafts can be locked to one another in a rotationally fixed manner by a spring depending on operating conditions and released by an auxiliary coil which, upon energization, provides for axial movement of the rotor out of its locked position to permit adjustment thereof.
Abstract:
An actuator operation amount setting unit prepares the rotational speed command value for an electric motor such that the phase of an intake valve changes in accordance with the target phase. An electric-motor EDU controls the motor supply electric power such that the electric motor operates in accordance with the rotational speed command value. An overheating determination unit determines whether at least one of the electric motor and the electric-motor EDU needs to be restricted from heating up based on a result of comparison between the information indicating the motor supply electric power and the reference value. A rotational speed command value restriction unit restricts the rotational speed command value provided to the electric-motor EDU to a value within a predetermined range, when it is determined that the at least one of the electric motor and the electric-motor EDU needs to be restricted from heating up. A reference value setting unit variably sets the reference value based on the rotational speed of the electric motor.
Abstract:
A motor current (driving current of motor) is estimated based on a target motor speed, an actual motor speed, and an engine speed. When the estimated motor current exceeds the upper limit value equivalent to a heat generation limiting current, the motor current is restricted by restricting a variation (motor speed F/B amount) in target motor speed outputted to an EDU from an ECU. Thereby, the heat value of motor may not exceed the heat generation limit, and it can be prevented that the coil temperature of motor exceeds an allowable temperature range. A durability deterioration and failure of motor can be prevented.
Abstract:
Constant pressure internal combustion engine having compression and expansion chambers of variable volume, an elongated combustion chamber of substantially constant volume between the compression and expansion chambers, and a fuel inlet for introducing fuel into the combustion chamber where it mixes with compressed air from the compression chamber to form a mixture of fuel and air that burns as it travels through the combustion chamber. The pressure remains substantially constant within the combustion chamber over a wide range of operating and load conditions.
Abstract:
An intake valve phase setting unit sets the target valve phase used in the variable valve timing control based on the engine operating state, and a control target value setting unit sets the control target value based on the target valve phase. An actuator operation amount setting unit prepares the rotational speed command value for an electric motor that serves as an actuator of a variable valve timing system based on the deviation of the current value from the control target value. A phase change rate control unit sets the rate of change in the valve phase to a lower value when the variable valve timing control moves the valve phase away from the reference phase (the phase when the engine is idling) at which combustion takes place stably in engine than when the variable valve timing control causes the valve phase to the reference phase.